Skip to main content
Log in

Microstructure Evolution and Rapid Solidification Behavior of Blended Nickel-Based Superalloy Powders Fabricated by Laser Powder Deposition

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

An Erratum to this article was published on 18 May 2016

Abstract

Laser powder deposition was performed on a substrate of Inconel 738 using blended powders of Mar M247 and Amdry DF3 with a ratio of 4:1 for repairing purposes. In the as-deposited condition, continuous secondary phases composed of γ-Ni3B eutectics and discrete (Cr, W)B borides were observed in inter-dendritic regions, and time-dependent nucleation simulation results confirmed that (Cr, W)B was the primary secondary phase formed during rapid solidification. Supersaturated solid solution of B was detected in the γ solid solution dendritic cores. The Kurz–Giovanola–Trivedi model was performed to predict the interfacial morphology and correlate the solidification front velocity (SFV) with dendrite tip radius. It was observed from high-resolution scanning electron microscopy that the dendrite tip radius of the upper region was in the range of 15 to 30 nm, which yielded a SFV of approx 30 cm/s. The continuous growth model for solute trapping behavior developed by Aziz and Kaplan was used to determine that the effective partition coefficient of B was approximately 0.025. Finally, the feasibility of the modeling results were rationalized with the Clyne–Kurz segregation simulation of B, where Clyne–Kurz prediction using a partition coefficient of 0.025 was in good agreement with the electron probe microanalysis results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.N. DuPont, J.C. Lippold and S.D. Kiser: Welding metallurgy and weldability of nickel-base alloys, Wiley, Hoboken, N.J., 2009.

    Book  Google Scholar 

  2. J.E. Flinkfeldt and T.F. Pedersen: Mater. Sci. Forum, 1994, vol. 163, pp. 423-428.

    Article  Google Scholar 

  3. M. Riabkina-Fishman and J. Zahavi: Appl. Surf. Sci., 1996, vol. 106, pp. 263-267.

    Article  Google Scholar 

  4. K. Banerjee, N.L. Richards and M.C. Chaturvedi: Metall. Mater. Trans. A, 2005, vol. 36, pp. 1881-1890.

    Article  Google Scholar 

  5. D. Liu, J. Lippold, J. Li, S. Rohklin, J. Vollbrecht and R. Grylls: Metall. Mater. Trans. A, 2014, vol. 45, pp. 4454-4469.

    Article  Google Scholar 

  6. L. Rickenbacher, T. Etter, S. Hövel and K. Wegener: Rapid Prototyping Journal, 2013, vol. 19, pp. 282-290.

    Article  Google Scholar 

  7. Y. Nakao: Transactions of the Japan Welding Society, 1988, vol. 19, pp. 66-74.

    Google Scholar 

  8. C.Y. Su, C.P. Chou, B.C. Wu and W.C. Lih: J. Mater. Eng. Perform., vol. 6, pp. 619-627.

    Article  Google Scholar 

  9. A.A. Lugan, P.A. Hilton, G.B. Melton and C. Rinaldi: In ICALEO 2006—25th International Congress on Applications of Laser and Electro-Optics, Congress Proceedings, (2006).

  10. M.M.M. Ebrahimnia, F. Malek Ghaini and H.R. Shahverdi: Science Technology of Welding Joining, 2014, vol. 19, pp. 25-29.

    Article  Google Scholar 

  11. B. Alexandrov, A. Hope, J. Sowards, J. Lippold and S. McCracken: Weld World, 2011, vol. 55, pp. 65-76.

    Article  Google Scholar 

  12. J. Sowards, D. Liang, B. Alexandrov, G. Frankel and J. Lippold: Metall. Mater. Trans. A, 2012, vol. 43, pp. 1209-1222.

    Article  Google Scholar 

  13. A.B. Goncharov, J. Liburdi and P. Lowden: Patent Application WO2014085892A1, 2012.

  14. A.B. Goncharov, J. Liburdi and P. Lowden: Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, 2014.

  15. Y. Tian, D. McAllister, H. Colijn, M. Mills, D. Farson, M. Nordin and S. Babu: Metall. Mater. Trans. A, 2014, vol. 45, pp. 4470-4483.

    Article  Google Scholar 

  16. S. Li, Q. Wei, Y. Shi, Z. Zhu and D. Zhang: J. Mater. Sci. Technol., 2015, vol. 31, pp. 946-952.

    Article  Google Scholar 

  17. W.J. Boettinger, L.A. Bendersky, S.R. Coriell, R.J. Schaefer and F.S. Biancaniello: Journal of Crystal Growth, 1987, vol. 80, pp. 17-25.

    Article  Google Scholar 

  18. J.C. Baker and J.W. Gahn: Acta Metall., 1969, vol. 17, pp. 575-578.

    Article  Google Scholar 

  19. P.M. Smith and M.J. Aziz: Acta Metall. et Mater., 1994, vol. 42, pp. 3515-3525.

    Article  Google Scholar 

  20. M.J. Aziz: J. Appl. Phys., 1982, vol. 53, pp. 1158-1168.

    Article  Google Scholar 

  21. M.J. Aziz, J.Y. Tsao, M.O. Thompson, P.S. Peercy and C.W. White: Phys. Rev. Lett., 1986, vol. 56, pp. 2489-2492.

    Article  Google Scholar 

  22. P.M. Smith, R. Reitano and M.J. Aziz: In Materials Research Society Symposium Proceedings (1993), pp 749–754.

  23. K. Eckler, R.F. Cochrane, D.M. Herlach and B. Feuerbacher: Mater. Sci. Eng., A, 1991, vol. 133, pp. 702-705.

    Article  Google Scholar 

  24. K. Eckler, D.M. Herlach and M.J. Aziz: Acta Metall. et Mater., 1994, vol. 42, pp. 975-979.

    Article  Google Scholar 

  25. M.J. Aziz and T. Kaplan: Acta Metall., 1988, vol. 36, pp. 2335-2347.

    Article  Google Scholar 

  26. N.J. Harrison, I. Todd and K. Mumtaz: Acta Mater., 2015, vol. 94, pp. 59-68.

    Article  Google Scholar 

  27. R.K. Sidhu, O.A. Ojo and M.C. Chaturvedi: Metall. Mater. Trans. A, 2007, vol. 38, pp. 858-870.

    Article  Google Scholar 

  28. C.A. Schneider, W.S. Rasband and K.W. Eliceiri: Nature Methods, 2012, vol. 9, pp. 671-675.

    Article  Google Scholar 

  29. D. Drouin, A.R. Couture, D. Joly, X. Tastet, V. Aimez and R. Gauvin: Scanning, 2007, vol. 29, pp. 92-101.

    Article  Google Scholar 

  30. G.P. Dinda, A.K. Dasgupta and J. Mazumder: Mater. Sci. Eng., A, 2009, vol. 509, pp. 98-104.

    Article  Google Scholar 

  31. F. Xu, Y. Lv, Y. Liu, B. Xu and P. He: Physics Procedia, 2013, vol. 50, pp. 48-54.

    Article  Google Scholar 

  32. O.A. Ojo, N.L. Richards and M.C. Chaturvedi: Metall. Mater. Trans. A, 2006, vol. 37, pp. 421-433.

    Article  Google Scholar 

  33. T.B. Massalski, H. Okamoto and A.S.M. International: Binary alloy phase diagrams, ASM International, Materials Park, Ohio, 1990.

    Google Scholar 

  34. G. Shao and P. Tsakiropoulos: Acta Metall. et Mater., 1994, vol. 42, pp. 2937-2942.

    Article  Google Scholar 

  35. H. Jones: Philosophical Magazine B: Physics of Condensed Matter; Electronic, Optical and Magnetic Properties, 1990, vol. 61, pp. 487-509.

    Article  Google Scholar 

  36. V.M. Azhazha, V.E. Semenenko and N.N. Pilipenko: Powder Metall. Met. Ceram., 2007, vol. 46, pp. 32-37.

    Article  Google Scholar 

  37. C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A.D. Pelton and S. Petersen: Calphad, 2002, vol. 26, pp. 189-228.

    Article  Google Scholar 

  38. F. Spaepen and D. Turnbull: in Laser Annealing of Semiconductors, J.M.P.W. Mayer, ed., Academic Press, New York, 1982, pp. 15–42.

  39. S. Kou: In Welding Metallurgy, John Wiley & Sons, Inc., New York, pp. 37–64.

    Google Scholar 

  40. W. Kurz and D.J. Fisher: Acta Metall., 1981, vol. 29, pp. 11-20.

    Article  Google Scholar 

  41. M.H. Burden and J.D. Hunt: J. Cryst. Growth, 1974, vol. 22, pp. 109-116.

    Article  Google Scholar 

  42. S.A. David and J.M. Vitek: Int. Mater. Rev., 1989, vol. 34, pp. 213-245.

    Article  Google Scholar 

  43. W.W. Mullins and R.F. Sekerka: J. Appl. Phys., 1964, vol. 35, pp. 444-451.

    Article  Google Scholar 

  44. D.E. Hoglund, M.J. Aziz, S.R. Stiffler, M.O. Thompson, J.Y. Tsao and P.S. Peercy: J. Cryst. Growth, 1991, vol. 109, pp. 107–12.

    Article  Google Scholar 

  45. W. Kurz, B. Giovanola and R. Trivedi: Acta Metall., 1986, vol. 34, pp. 823-830.

    Article  Google Scholar 

  46. W.J. Boettinger and S.R. Coriell: in Science and Technology of the Undercooled Melt, P.R. Sahm, H. Jones and C.M. Adam, eds., Springer, New York, 1986, pp. 81–109.

  47. E. Scheil: Z. Metallkd., 1942, vol. 34, pp. 70-72.

    Google Scholar 

  48. H.D. Brody and M.C. Flemings: Trans. AIME, 1966, vol. 236, pp. 615-623.

    Google Scholar 

  49. T.W. Clyne and W. Kurz: Metall. Trans. A, 1981, vol. 12, pp. 965-971.

    Article  Google Scholar 

  50. D. Heard: Ph.D. Thesis, McGill University, Montreal, QC, 2013.

  51. A. Lal, R.G. Iacocca and R.M. German: Journal of Materials Science, 2000, vol. 35, pp. 4507-4518.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the support from Liburdi Turbine Service, particularly Dr. Alexandre Gontcharov and Dr. Paul Lowden for sample preparation and technical support. The authors would also like to acknowledge the McGill University Doctoral Award (MEDA) and NSERC for financial support. Finally the authors would like to thank Mr. Nicolas Brodusch for technical assistance and Dr. Manas Paliwal for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Brochu.

Additional information

Manuscript submitted December 12, 2015.

Appendix A. Calculation of dendrite tip radius

Appendix A. Calculation of dendrite tip radius

The equation to estimate dendrite tip radius, as developed by Kurz and Fisher,[40] was calculated using Eq. [A.1]

$$ R = \frac{{\lambda^{2} G}}{{4\Delta T^{\prime}}}, $$
(A.1)

where R is dendrite tip radius, λ is dendrite arm spacing, G is temperature gradient, and ΔT′ is the temperature difference between dendrite tip and non-equilibrium solidus, and

$$ \Delta T^{\prime} = T_{\text{L}} - T_{\text{S}} - \Delta T^{*}, $$
(A.2)

where T L and T S are liquidus and solidus temperature, respectively, ΔT* is tip undercooling and expressed in equation (A.3) at RSP,

$$ \Delta T^{*} = mC_{0} \left( {1 - \frac{1}{1 - P\pi \sqrt A }} \right), $$
(A.3)

where m is the slope of the liquidus line in the phase diagram and can be described as Eq. [11] for RSP, C0 is the nominal solute concentration, p is the complementary partition coefficient and displayed as 1 − k, k is effective partition coefficient, and

$$ A = \frac{V\varGamma }{{D\Delta T_{0} k}}, $$
(A.4)

where V is SFV, γ is the Gibbs–Thompson coefficient, D is diffusion coefficient, and ΔT 0 = T L − T S.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Gauvin, R. & Brochu, M. Microstructure Evolution and Rapid Solidification Behavior of Blended Nickel-Based Superalloy Powders Fabricated by Laser Powder Deposition. Metall Mater Trans A 47, 3771–3780 (2016). https://doi.org/10.1007/s11661-016-3505-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3505-8

Keywords

Navigation