Skip to main content
Log in

Rapid Synthesis of a Near-β Titanium Alloy by Blended Elemental Powder Metallurgy (BEPM) with Induction Sintering

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A near-β Ti-13V-11Cr-3Al alloy was produced by blended elemental powder metallurgy combining warm compaction and induction sintering. Two Ti-13V-11Cr-3Al powder compacts with different oxygen content were manufactured by mixing PREP and HDH Ti powders with Cr and AlV master alloy powders, respectively. The effect of isothermal holding time, at a sintering temperature of 1573 K (1300 °C), on pore characteristics and compositional homogeneity was investigated in this study. Pore coarsening by Ostwald ripening occurred with an increase in the isothermal holding time and Kirkendall voids were produced by a reaction between Ti and Cr. After an isothermal holding time of 10 minutes, the two sintered powder compacts had a homogeneous composition. Ti/AlV and Ti/Cr diffusion couples were used to predict the distribution of alloying elements, and the binary Ti-V, Ti-Al, and Ti-Cr interdiffusion coefficients were consistent with the distribution of alloying elements after isothermal holding. The mechanical properties of sintered powder compacts, prepared using PREP Ti powder as the raw powder, were optimized by sintered density and pore size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. M. Niinomi, M. Nakai, J. Hieda, K. Cho, T. Kasuga, T. Hattori, T. Goto and T. Hanawa: Int. J. Surf. Sci. Eng., 2014, vol. 8, pp. 138-52.

    Article  Google Scholar 

  2. R. Banerjee, S. Nag and H. Fraser: Mater. Sci. Eng., C, 2005, vol. 25, pp. 282-89.

    Article  Google Scholar 

  3. M. Niinomi: Metall. Mater. Trans. A, 2002, vol. 33, pp. 477-86.

    Article  Google Scholar 

  4. R. Boyer, G. Welsch and E.W. Collings: Materials Properties Handbook: Titanium Alloys. ASM international, Materials Park, OH, USA, 1994, pp. 877-78.

    Google Scholar 

  5. A. Mitchell, A. Kawakami and S. Cockcroft: High Temp. Mater. Processes (London), 2006, vol. 25, pp. 337-49.

    Google Scholar 

  6. W. Zeng and Y. Zhou: Mater. Sci. Eng., A, 1999, vol. 260, pp. 203-11.

    Article  Google Scholar 

  7. H. Guo, Z. Zhao, C. Duan and Z. Yao: JOM, 2008, vol. 60, pp. 47-49.

    Article  Google Scholar 

  8. D.G. Savvakin, A. Carman, O.M. Ivasishin, M.V. Matviychuk, A.A. Gazder and E.V. Pereloma: Metall. Mater. Trans. A, 2012, vol. 43, pp. 716-23.

    Article  Google Scholar 

  9. J. Málek, F. Hnilica, J. Veselý and B. Smola: Mater. Charact., 2013, vol. 84, pp. 225-31.

    Article  Google Scholar 

  10. M. Ahmed, A.A. Gazder, D.G. Savvakin, O.M. Ivasishin and E.V. Pereloma: J. Mater. Sci., 2012, vol. 47, pp. 7013-25.

    Article  Google Scholar 

  11. A. Carman, L. Zhang, O. Ivasishin, D. Savvakin, M. Matviychuk and E. Pereloma: Mater. Sci. Eng., A, 2011, vol. 528, pp. 1686-93.

    Article  Google Scholar 

  12. E.V. Pereloma, D.G. Savvakin, A. Carman, A.A. Gazder and O.M. Ivasishin: Key Eng. Mater., 2012, vol. 520, pp. 49-56.

    Article  Google Scholar 

  13. O.M. Ivasishin, D. Eylon, V. Bondarchuk and D.G. Savvakin: Defect Diffus. Forum, 2008, vol. 277, pp. 177-85.

    Google Scholar 

  14. O.M. Ivasishin and D.G. Savvakin: Key Eng. Mater., 2010, vol. 436, pp. 113-21.

    Article  Google Scholar 

  15. S.-Y. Lee, Y. Iijima and K.-I. Hirano: Mater. Trans. JIM, 1991, vol. 32, pp. 451-56.

    Article  Google Scholar 

  16. G. Neumann and C. Tuijn: Self-diffusion and impurity diffusion in pure metals: handbook of experimental data. Pergamon, Amsterdam, 2009, p. 182.

    Google Scholar 

  17. G. Lütjering and J.C. Williams: Titanium. Springer-Verlag, Berlin, 2003, pp. 43-44.

    Book  Google Scholar 

  18. Z. Liu and G. Welsch: Metall. Mater. Trans. A, 1991, vol. 22A, pp. 946-48.

    Article  Google Scholar 

  19. R.P. Baron, F.E. Wawner and J.A. Wert: Scripta Mater., 1998, vol. 39, pp. 269-75.

    Article  Google Scholar 

  20. I.-H. Oh, N. Nomura, N. Masahashi and S. Hanada: Scripta Mater., 2003, vol. 49, pp. 1197-202.

    Article  Google Scholar 

  21. S. Luo, Y. Yang, G. Schaffer and M. Qian: J. Mater. Process. Technol., 2014, vol. 214, pp. 660-66.

    Article  Google Scholar 

  22. H.-C. Kim, D.-K. Kim, K.-D. Woo, I.-Y. Ko and I.-J. Shon: Int. J. Refract. Met. Hard Mater., 2008, vol. 26, pp. 48-54.

    Article  Google Scholar 

  23. G. Upadhyaya: Mater. Chem. Phys., 2001, vol. 67, pp. 1-5.

    Article  Google Scholar 

  24. H.C. Pavanati, A.M. Maliska, A.N. Klein and J.L.R. Muzart: Mater. Res., 2007, vol. 10, pp. 87-93.

    Article  Google Scholar 

  25. Z. Liu and G. Welsch: Metall. Trans. A, 1988, vol. 19, pp. 527-42.

    Article  Google Scholar 

  26. R. German: Sintering: from Empirical Observations to Scientific Principles. Butterworth-Heinemann, Amsterdam, 2014, pp. 195-99.

    Google Scholar 

  27. O. Lame, D. Bellet, M. Di Michiel and D. Bouvard: Acta Mater., 2004, vol. 52, pp. 977-84.

    Article  Google Scholar 

  28. T. Takahashi, Y. Minamino and M. Komatsu: Mater. Trans. JIM, 2008, vol. 49, pp. 125-32.

    Article  Google Scholar 

  29. W. Sprengel, T. Yamada and H. Nakajima: Defect Diffus. Forum, 1997, vol. 143, pp. 431-36.

    Article  Google Scholar 

  30. S.-Y. Lee, O. Taguchi, and Y. Iijima: Mater. Trans. JIM, 2010, vol. 51, pp. 1809–13.

    Article  Google Scholar 

  31. U. Gerold and C. Herzig: Defect Diffus. Forum, 1997, vol. 143, pp. 437-42.

    Article  Google Scholar 

  32. Y. Mishin and C. Herzig: Acta Mater., 2000, vol. 48, pp. 589-623.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Business, Innovation and Employment, New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Gabbitas.

Additional information

Manuscript submitted October 8, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, M., Gabbitas, B. Rapid Synthesis of a Near-β Titanium Alloy by Blended Elemental Powder Metallurgy (BEPM) with Induction Sintering. Metall Mater Trans A 46, 4716–4729 (2015). https://doi.org/10.1007/s11661-015-3048-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3048-4

Keywords

Navigation