Skip to main content
Log in

Effects of oxygen and heat treatment on the mechanical properties of alpha and beta titanium alloys

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Two alloys, Ti-6Al-2V and Ti-2Al-16V, simulating the alpha and beta phases of Ti-6A1-4V, respectively, were prepared with oxygen concentrations from 0.07 to 0.65 wt pct (0.20 to 1.83 at. pct). Their microstructure, deformation behavior, and strength were investigated with X-ray diffraction, microscopy, and mechanical tests to determine the effects of oxygen concentration and heat treatment. In both alloys the hardness increases in identical fashion with the square root of oxygen concentration. The alloys' strengths also depend on heat treatment, but in different ways. Whereas the alpha alloy is non-age-hardenable, the beta alloy's strength can be doubled by aging. The hardening effect of oxygen is generally unaffected by heat treatment, except for the alloys with the highest oxygen concentrations. During aging of the alpha a small amount of Ti3Al can form, and slight age-hardening occurs. The ductility of the alpha alloy is little affected by aging. On the other hand, oxygen causes a change from good ductility at low oxygen concentration (0.07 wt pct) to total brittleness at 0.65 wt pct oxygen, independent of heat treatment. In the beta alloy there are complex phase transformations depending on heat treatment. Its deformation behavior varies from very ductile in solutiontreated and quenched (STQ) condition to totally brittle in aged conditions. The aging embrittlement appears to be caused by alpha and some omega precipitation. Decoration of the beta grain boundaries with precipitates accounts for the intergranular brittle fracture. Oxygen, on the other hand, is not an embrittler, although it reduces the ductility of the beta alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. I. Jaffee, H. R. Ogden, and D.J. Maykuth:Trans. AIME, 1950, vol. 188, pp. 1261–66.

    CAS  Google Scholar 

  2. H. Conrad, M. Doner, and B. de Meester:Titanium Science and Technology, Plenum Press, 1973, pp. 969–1005.

  3. H. Conrad:Progr. in Mat. Science, 1981, vol. 26, pp. 123–403.

    Article  CAS  Google Scholar 

  4. H. Conrad:Can. J. Phys., 1967, vol. 45, pp. 581–90.

    CAS  Google Scholar 

  5. R. Jaffee: Presentation at TMS-AIME meeting, spring 1987, Denver, CO.

  6. R. W. Judy, Jr., B. B. Rath, and R. G. Goode:Titanium Science and Technology, DGM, 1985, pp. 1925–43.

  7. H. Margolin and J. P. Nielsen:Modern Materials, H. H. Hausner, ed., Academic Press, 1960, vol. 2, pp. 291–307.

  8. K. S. Chan, C. C. Wojcik, and D. A. Koss:Metall. Trans. A, 1981, vol. 12A, pp. 1899–1907.

    Google Scholar 

  9. S. Ankem and H. Margolin:Metall. Trans. A, 1980, vol. 11A, pp. 963–72.

    CAS  Google Scholar 

  10. J. C. Williams, A. W. Thompson, C. G. Rhodes, and J. C. Chesnutt:Titanium and Titanium Alloys, Plenum Press, 1976, pp. 467–96.

  11. I. W. Hall and C. Hammond:Titanium and Titanium Alloys, Plenum Press, 1976, pp. 601–14.

  12. M. Peters and J. C. Williams:Titanium Science and Technology, DGM, 1985, pp. 1843–50.

  13. G. Welsch, G. Lütjering, K. Gazioglu, and W. Bunk:Metall. Trans. A, 1977, vol. 8A, pp. 169–77.

    CAS  Google Scholar 

  14. G. Welsch and W. Bunk:Metall. Trans. A, 1982, vol. 13A, pp. 889–99.

    Google Scholar 

  15. T.W. Duerig, R.M. Middleton, G.T. Terlinde, and J.C. Williams:Titanium '80 Science and Technology, TMS-AIME, 1980, vol. 2, pp. 1503–12.

  16. Y. T. Lee and G. Welsch:Titanium Science and Technology, DGM, 1985, pp. 1689–96.

  17. Y. T.Lee: Ph.D. Thesis, Case Western Reserve University, Cleveland, OH, 1985.

    Google Scholar 

  18. G. Welsch and M. Weller: inRole of Interfaces in Material Damping, B.B. Rath and M.S. Misra, eds., ASM, 1985, pp. 73–78.

  19. A. Lasalmonie and M. Loubradou:J. Mat. Sci., 1979, vol. 14, pp. 2589–95.

    Article  CAS  Google Scholar 

  20. Y. Murakami, O. Izumi, and T. Nishimura:Titanium Science and Technology, DGM, 1985, vol. 3, pp. 1403–22.

  21. M. A. Imam, B.B. Rath, and D.J. Gillespie:Titanium Science and Technology, DGM, 1985, vol. 3, pp. 1511–18.

  22. H.Y. Yu, M.A. Imam, and B.B. Rath:Titanium Science and Technology, DGM, 1985, vol. 3, pp. 1819–26.

  23. H. Becker:Z. Metall., 1981, vol. 72, pp. 679–87.

    CAS  Google Scholar 

  24. T.W. Duerig, G.T. Terlinde, and J.C. Williams:Metall. Trans. A, 1980, vol. 11A, pp. 1987–98.

    CAS  Google Scholar 

  25. G.T. Terlinde, T.W. Duerig, and J.C. Williams:Metall. Trans. A, 1983, vol. 14A, pp. 2101–15.

    CAS  Google Scholar 

  26. G. H. Isaac and C. Hammond:Titanium Science and Technology, DGM, 1985, vol. 3, pp. 1535–42.

  27. Y. Murakami, K. Nakao, Y. Yasuda, N. Tokushige, H. Yoshida, and Y. Moriguchi:Titanium Science and Technology, DGM, 1985, vol. 3, pp. 1543–50.

  28. H. M. Flower, A. I. P. Nwobu, and D. R. F. West:Titanium Science and Technology, DGM, 1985, vol. 3, pp. 1567–74.

  29. T. Sugitomo, K. Kamei, S. Komatsu, K. Sugimoto, H. Matsumoto, and M. Ikeda:Titanium Science and Technology, DGM, 1985, vol. 3, pp. 1583–90.

  30. R. Castro and L. Seraphin:Mem. Sci. Rev. Met., 1966, vol. 63, pp. 1025–58.

    CAS  Google Scholar 

  31. R. E. Curtis and W. F. Spurr:Trans. ASM, 1968, vol. 61, pp. 115–27.

    CAS  Google Scholar 

  32. S. Naka: Ph.D. Thesis, University of South Paris, 1983.

  33. M. Majdic, G. Welsch, and G. Ziegler:Titanium and Titanium Alloys, Plenum Press, 1976, pp. 1905–18.

  34. A. I. Kahveci and G. Welsch:Scripta Metall., 1986, vol. 20, pp. 1287–90.

    Article  CAS  Google Scholar 

  35. Z. Liu and G. Welsch: Case Western Reserve University, Cleveland, OH, unpublished research, 1987.

  36. F. Larson and A. Zarkades: MCIC Report No. MCIC-74-20, 1974.

  37. S. Yamaguchi:J. Phys. Soc. Jpn., 1969, vol. 27, pp. 155–63.

    Article  CAS  Google Scholar 

  38. T. K. G. Namboodhiri, C. J. M. Mahon, Jr., and H. Herman:Metall. Trans., 1973, vol. 4, pp. 1323–31.

    Article  CAS  Google Scholar 

  39. D. J. Truax and C.J. McMahon, Jr.:Mat. Sci. Eng., 1974, vol. 13, pp. 125–39.

    Article  CAS  Google Scholar 

  40. P. C. Gehlen:The Science, Technology and Application of Titanium, Pergamon Press, 1968, pp. 349–57.

  41. J. Y. Lim, C. J. M. Mahon, Jr., D. P. Pope, and J. C. Williams:Metall. Trans. A, 1976, vol. 7A, pp. 139–44.

    CAS  Google Scholar 

  42. R. M. Middleton and C. R. Hickey, Jr.:Titanium and Titanium Alloys, Plenum Press, 1976, pp. 1567–81.

  43. N. A. Nikhanorov and V. V. Latsh:Titanium and Titanium Alloys, Plenum Press, 1976, pp. 1651–60.

  44. N. E. Paton and J. C. Williams:Scripta Metall., 1973, vol. 7, pp. 647–50.

    Article  CAS  Google Scholar 

  45. A. I. Kahveci:Ph.D. Thesis, Case Western Reserve University, Cleveland, OH, 1988.

    Google Scholar 

  46. J.C. Williams and M.J. Blackburn:Trans. ASM, 1967, vol. 60, pp. 373–83.

    CAS  Google Scholar 

  47. P.J. Fopiano and CF. Hickey, Jr.:The Science, Technology and Application of Titanium, Pergamon Press, 1970, pp. 815–16.

  48. H. Gegel:op. cit. 75 in H. Conrad, M. Doner, and B. de Meester,Titanium Science and Technology, Plenum Press, 1973, pp. 969–1008.

  49. H. Sasano and H. Kimura:Titanium '80 Science and Technology, TMS-AIME, 1980, pp. 1147–54.

  50. I. Weiss, G. Welsch, F. H. Froes, and D. Eylon:Strength of Metals and Alloys, Pergamon Press, 1985, vol. 2, pp. 1073–78.

  51. H.W. Rosenberg:The Science, Technology and Application of Titanium, Pergamon Press, 1970, pp. 851–59.

  52. K. Shimasaki, K. Ono, and T. Tsuruno:Titanium '80 Science and Technology, TMS-AIME, 1980, vol. 2, pp. 1131–35.

  53. P.J. Fopiano, M.B. Bever, and B.L. Averbach:Trans. ASM, 1969, vol. 62, pp. 324–32.

    CAS  Google Scholar 

  54. J. D. Boyd and R. G. Hoagland:Titanium Science and Technology, Plenum Press, 1973, vol. 2, pp. 1071–83.

  55. M. Peters, K. Welpmann, and H. Döker:Titanium Science and Technology, DGM, 1985, vol. 4, pp. 2267–74.

  56. K. Oazaki and H. Conrad:Acta Metall., 1973, vol. 21, pp. 1117–29.

    Article  Google Scholar 

  57. H. Conrad and R. Jones:The Science, Technology and Application of Titanium, Pergamon Press, 1970, pp. 489–501.

  58. I. Weiss, F. H. Froes, and P. J. Bania:Strength of Metals and Alloys, Pergamon Press, 1985, vol. 2, pp. 1055–66.

  59. W. -B. Busch and H. -D. Kunze:Titanium Science and Technology, DGM, 1985, vol. 2, pp. 725–32.

  60. S. N. Monteiro, A. T. Santhanam, and R. E. Reed-Hill:The Science,Technology and Application of Titanium, Pergamon Press, 1970, pp. 503–16.

  61. L. W. Meyer:Titanium Science and Technology, DGM, 1985, vol. 3, pp. 1851–58.

  62. M. F. Ashby and D. R. H. Jones:Engineering Materials, Pergamon Press, 1982, p. 106.

  63. E. W. Collings:The Physical Metallurgies of Titanium Alloys, ASM, 1984, pp. 115–22.

  64. L. E. Tanner, A.R. Pelton, and R. Gronski:J. de Physique, 1982, vol. 43, pp. C4–169.

    Google Scholar 

  65. D. A. Koss: The Pennsylvania State University, PA, private communication, 1987.

  66. Z. Liu: Ph.D. Thesis, Case Western Reserve University, Cleveland, OH, 1988.

  67. D. Eylon and CM. Pierce:Metall. Trans. A, 1976, vol. 7A, pp. 111–21.

    CAS  Google Scholar 

  68. S.L. Semiatin and G.D. Lahoti:Metall. Trans. A, 1981, vol. 12A, pp. 1705–17.

    Google Scholar 

  69. H. Margolin and P. Cohen:Titanium '80 Science and Technology, AIME, 1980, pp. 1555–61.

  70. A. Gogia, D. Banerjee, and N. C. Birla:Trans. Indian Inst. Metals, 1983, vol. 36, pp. 200–07.

    CAS  Google Scholar 

  71. I. Weiss, F.H. Froes, D. Eylon, and G. Welsch:Metall. Trans. A, 1986, vol. 17A, pp. 1935–47.

    CAS  Google Scholar 

  72. S. M. L. Sastry, T. C. Peng, and J. E. O'Neal:Titanium Science and Technology, DGM, 1985, vol. 3, pp. 1811–18.

  73. G. R. Yoder, L. A. Cooley, and T. W. Crooker:Titanium '80 Science and Technology, AIME, 1980, vol. 3, pp. 1865–73.

  74. J. C. Chesnutt, A. W. Thompson, and J. C. Williams:Titanium '80 Science and Technology, AIME, 1980, vol. 3, pp. 1875–82.

  75. G. Lütjering and A. Gysler:Titanium Science and Technology, DGM, 1985, vol. 4, pp. 2065–83.

  76. L. Levin, R. G. Vogt, D. Eylon, and F. H. Froes:Titanium Science and Technology, DGM, 1985, vol. 4, pp. 2107–14.

  77. D. S. Shih, F. S. Lin, and E. A. Starke:Titanium Science and Technology, DGM, 1985, vol. 4, pp. 2259–66.

  78. M. J. Blackburn and J. C. Williams:Trans. ASM, 1969, vol. 62, pp. 298–409.

    Google Scholar 

  79. D. Tabor:The Hardness of Metal, Oxford, Clarendon Press, 1951, p. 106.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Welsch, G. Effects of oxygen and heat treatment on the mechanical properties of alpha and beta titanium alloys. Metall Trans A 19, 527–542 (1988). https://doi.org/10.1007/BF02649267

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649267

Keywords

Navigation