Skip to main content
Log in

Microstructure evolution and alloying elements distribution between the phases in powder near-β titanium alloys during thermo-mechanical processing

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present study, two powders near-β Ti alloys having a nominal composition of Ti-5Al-5Mo-5V-XCr-1Fe (X = 1–2, wt%) were studied. The alloys were produced via the blended elemental powder metallurgy technique using hydrogenated Ti powder. Microstructure evolution and the distribution of the alloying elements between the phases were investigated after each step of thermo-mechanical processing (TMP). Microstructures were refined through the TMP in both alloys. Porosity was reduced with deformation at 1173 K (900 °C) in the β phase field. The β → α phase transformation occurred during soaking at 1023 K (750 °C) in the α + β phase field. Fragmentation of the continuous grain boundary α occurred because of the 40 % deformation at 1023 K (750 °C). Variation in the concentration of the alloying elements in each phase took place through the diffusion during soaking in the α + β phase field, e.g. exit of β-stabilisers from the α-phase. However, the α phase remained supersaturated with β stabilisers. Deformation had no influence on the distribution of the alloying elements. An addition of 1 % Cr content slightly affects the amount of the α phase formed and β grain size, but it has no noticeable effect on the distribution of the alloying elements between the phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Moiseev VN (1998) Met Sci Heat Treat 40:482

    Article  CAS  Google Scholar 

  2. Moiseev VN (2000) Met Sci Heat Treat vol. 42:81

    Article  CAS  Google Scholar 

  3. Froes FH, Eylon D (1990) Int Mater Rev 35:162

    Article  CAS  Google Scholar 

  4. Moxson V, Senkov ON, Froes FH (1998) Int J Powder Metall 34:45

    CAS  Google Scholar 

  5. Carman A, Zhang LC, Ivasishin OM, Savvakin DG, Matviychuk MV, Pereloma EV (2011) Mater Sci Eng A 528:1686

    Article  Google Scholar 

  6. Savvakin DG, Carman A, Ivasishin OM, Matviychuk MV, Gazder AA, Pereloma EV (2012) Metall Mater Trans A 43:716

    Article  CAS  Google Scholar 

  7. Ivasishin OM, Savvakin DG, Moxson VS, Bondareva KA, Froes FH (2002) Mater Technol Adv Perform Mater 17:20

    CAS  Google Scholar 

  8. Sauer C, Luetjering G (2001) J Mater Process Tech 117:311

    Article  CAS  Google Scholar 

  9. Chesnutt J, Froes FH (1977) Metall Mater Trans A 8:1013

    Article  Google Scholar 

  10. Clement N, Lenain A, Jacques PJ (2007) JOM 59:50

    Article  CAS  Google Scholar 

  11. Terlinde G, Duerig T, Williams J (1983) Metall Mater Trans A 14:2101

    Article  Google Scholar 

  12. Weiss I, Semiatin SL (1998) Mater Sci Eng A 243:46

    Article  Google Scholar 

  13. Nag S, Banrjee R, Hwang JY, Harper M, Fraser HL (2009) Philos Mag 89:535

    Article  CAS  Google Scholar 

  14. Zhao YQ, Xin SW, Zeng WD (2009) J Alloys Compd 481:190

    Article  CAS  Google Scholar 

  15. Polmear IJ (2006) Light alloys from traditional alloys to nanocrystals, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  16. Banerjee S, Mukhopadhyay P (2007) Phase transformations: example from titanium and zirconium alloys. Elsevier, Amsterdam

    Google Scholar 

  17. Terlinde G, Rathien HJ, Schwalbe KH (1988) Metall Trans A 19A:1037

    CAS  Google Scholar 

  18. Jones NG, Dashwood RJ, Dye D, Jackson M (2008) Mater Sci Eng A 490:369

    Article  Google Scholar 

  19. Zhang SZ, Liu ZQ, Wang GD, Chen LQ, Liu XH, Yang R (2009) J Cent South Univ Technol 16:354

    Article  CAS  Google Scholar 

  20. Nakajima H, Ogasawara K, Yamaguchi S, Koiwa M (1990) Mater Trans JIM 31:249

    CAS  Google Scholar 

  21. Neumann G, Tuijn C (2008) Self-diffusion and impurity elements diffusion in pure metals: handbook of experimental data 14:149. Elsevier, Amsterdam

    Google Scholar 

  22. Gibbs GB, Graham D, Tomlin DH (1963) Philos Mag 8:1269

    Article  CAS  Google Scholar 

  23. Lee SY, Iijima Y, Hirano KI (1991) Mater Trans JIM 32:451

    CAS  Google Scholar 

  24. Massalski TD, Okamoto H, Subramanian PR, Kasprzak L (eds) (1990) Binary alloys phase diagrams. ASM International, Materials Park

    Google Scholar 

  25. Lenain A, Clement N, Veron M, Jacques P (2007) Mater Sci Forum 3712:539–543

    Google Scholar 

  26. Li C, Wu X, Chen JH, Zwaag SV (2011) Mater Sci Eng A 528:5854

    Article  CAS  Google Scholar 

  27. Yang YF, Luo SD, Schaffer GB, Qian M (2011) Mater Sci Eng A 528:6719

    Article  CAS  Google Scholar 

  28. Ivasishin OM, Markovsky PE (1996) JOM 48:48

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Engineering Materials Institute strategic grant. The authors acknowledge the technical support during Gleeble tests by Mr. B. De Jong and Dr. L. Chen, UOW and use of UOW Electron Microscopy Centre, in particular JEOL 7001F, which was purchased with ARC support (LE0882613). Mr. Mansur Ahmed gratefully acknowledges the University of Wollongong Postgraduate Award (UPA) and the useful discussions with Mr. M. Reid, UOW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansur Ahmed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, M., Gazder, A.A., Savvakin, D.G. et al. Microstructure evolution and alloying elements distribution between the phases in powder near-β titanium alloys during thermo-mechanical processing. J Mater Sci 47, 7013–7025 (2012). https://doi.org/10.1007/s10853-012-6652-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6652-3

Keywords

Navigation