Skip to main content

Advertisement

Log in

Vacuum Pressureless Sintering of Ti-6Al-4V Alloy with Full Densification and Forged-Like Mechanical Properties

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Ti-6Al-4V ingots with a nearly 100% density, fine and homogeneous basket-weave microstructure, and better comprehensive mechanical properties (UTS = 935 MPa, Y.S. = 865 MPa, El. = 15.8%), have been manufactured by vacuum pressureless sintering of blended elemental powders. Coarse TiH2 powder, Al powder (2, 20 μm), V powder, and Al-V master alloy powder were used as raw materials to produce different powder mixtures (D 50 = 10 μm). Then, the compacts made by cold isostatic pressing were consolidated by different sintering curves. A detailed investigation of different as-sintered samples revealed that a higher density can be obtained by generating transient molten Al in the sintering process. Coarse Al powder and a rapid heating rate under the melting point of Al contribute to molten Al formation. The presence of temporary liquid phase changes the sintering mechanism, accelerating the sintering neck formation, improving sinterability of the powder mixtures. Density of 99.5% was achieved at 1150 °C, which is markedly lower than the sintering temperatures reported for conventional blended elemental powder metallurgy routes. In addition, low interstitial content, especially for oxygen (0.17 wt.%), is obtained by strict process control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.R. Boyer, An Overview on the Use of Titanium in the Aerospace Industry, Mater. Sci. Eng. A, 1996, 213(1–2), p 103–114

    Article  Google Scholar 

  2. Z. Esen and Ş. Bor, Characterization of Ti-6Al-4V Alloy Foams Synthesized by Space Holder Technique, Mater. Sci. Eng. A, 2011, 528(7–8), p 3200–3209

    Article  Google Scholar 

  3. Z.Z. Fang and P. Sun, Pathways to Optimize Performance/Cost Ratio of Powder Metallurgy Titanium—A Perspective, Key Eng. Mater., 2012, 520, p 15–23

    Article  Google Scholar 

  4. D. Banerjee and J.C. Williams, Perspectives on Titanium Science and Technology, Acta Mater., 2013, 61(3), p 844–879

    Article  Google Scholar 

  5. T.E. Norgate and G. Wellwood, The Potential Applications for Titanium Metal Powder and their Life Cycle Impacts, JOM, 2006, 58(9), p 58–63

    Article  Google Scholar 

  6. M.A. Imam and F.H. Froes, Low Cost Titanium and Developing Applications, JOM, 2010, 62(5), p 17–20

    Article  Google Scholar 

  7. S.J. Mashl, J.C. Hebeisen, and C.G. Hjorth, Producing Large P/M Near-net Shapes Using Hot Isostatic Pressing, JOM, 1999, 51(7), p 29–31

    Article  Google Scholar 

  8. O.M. Ivasishin, D.G. Savvakin, F. Froes, V.C. Mokson, and K.A. Bondareva, Synthesis of Alloy Ti-6Al-4V with Low Residual Porosity by a Powder Metallurgy Method, Powder Metall. Met., 2002, 41(7–8), p 382–390

    Article  Google Scholar 

  9. C.C. Chen, Recent Advancement in Titanium Near-Net-Shape Technology, JOM, 1982, 34(11), p 30–35

    Article  Google Scholar 

  10. H. Wang, Z.Z. Fang, and P. Sun, A Critical Review of Mechanical Properties of Powder Metallurgy Titanium, Int. J. Powder Metall., 2010, 46(5), p 45–57

    Google Scholar 

  11. Y. Kim, E.P. Kim, and Y.B. Song, Microstructure and Mechanical Properties of Hot Isostatically Pressed Ti-6Al-4V Alloy, J. Alloy. Compd., 2014, 603(8), p 207–212

    Google Scholar 

  12. L. Xu, R. Guo, and C. Bai, Effect of Hot Isostatic Pressing Conditions and Cooling Rate on Microstructure and Properties of Ti-6Al-4V Alloy from Atomized Powder, J. Mater. Sci. Technol., 2014, 30(12), p 1289–1295

    Article  Google Scholar 

  13. F. Yang, D. Zhang, and B. Gabbitas, Microstructural Evolution during Extrusion of a Ti/Al/Al35V65 (Ti-6Al-4V) Powder Compact and the Mechanical Properties of the Extruded Rod, Mater. Sci. Eng. A, 2014, 598, p 360–367

    Article  Google Scholar 

  14. C. Liang, M.X. Ma, and M.T. Jia, Microstructures and Tensile Mechanical Properties of Ti-6Al-4V Bar/Disk Fabricated by Powder Compact Extrusion/Forging, Mater. Sci. Eng. A, 2014, 619, p 290–299

    Article  Google Scholar 

  15. D. Zhang, S. Raynova, and V. Nadakuduru, Consolidation of Titanium, and Ti-6Al-4V Alloy Powders by Powder Compact Forging, Mater. Sci. Forum, 2009, 618–619, p 513–516

    Article  Google Scholar 

  16. J.F. Lu, Z.H. Zhang, and Z.F. Liu, Sintering Mechanism of Ti-6Al-4V Prepared by SPS, AMM, 2015, 782, p 97–101

    Article  Google Scholar 

  17. Y. Yamamoto, J.O. Kiggans, and M.B. Clark, Consolidation Process in Near Net Shape Manufacturing of Armstrong CP-Ti/Ti-6Al-4V Powders, Key Eng. Mater., 2010, 436, p 103–111

    Article  Google Scholar 

  18. L. Bolzoni, E.M. Ruiz-Navas, and E. Gordo, Feasibility Study of the Production of Biomedical Ti-6Al-4V Alloy by Powder Metallurgy, Mater. Sci. Eng. C, 2015, 49(3), p 400–407

    Article  Google Scholar 

  19. J.D. Paramore, Z.Z. Fang, P. Sun, M. Koopman, K.S.R. Chandran, and M. Dunstan, A Powder Metallurgy Method for Manufacturing Ti-6Al-4V with Wrought-Like Microstructures and Mechanical Properties via Hydrogen Sintering and Phase Transformation (HSPT), Scr. Mater., 2015, 107, p 103–106

    Article  Google Scholar 

  20. C. Haase, R. Lapovok, H.P. Ng, and Y. Estrin, Production of Ti-6Al-4V Billet Through Compaction of Blended Elemental Powders by Equal-Channel Angular Pressing, Mater. Sci. Eng. A, 2012, 550, p 263–272

    Article  Google Scholar 

  21. H.P. Ng, C. Haase, R. Lapovok, and Y. Estrin, Improving Sinterability of Ti–6Al–4V from Blended Elemental Powders through Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2013, 565(3), p 396–404

    Article  Google Scholar 

  22. T. Fujita, A. Ogawa, C. Ouchi, and H. Tajima, Microstructure and Properties of Titanium Alloy Produced in the Newly Developed Blended Elemental Powder Metallurgy Process, Mater. Sci. Eng. A, 1996, 213(1–2), p 148–153

    Article  Google Scholar 

  23. W. Chen, Y. Yamamoto, W.H. Peter, M.B. Clark, S.D. Nunn, and J.O. Kiggans, The Investigation of Die-pressing and Sintering Behavior of ITP CP-Ti and Ti-6Al-4V Powders, J. Alloy. Compd., 2012, 541, p 440–447

    Article  Google Scholar 

  24. X. Xu and P. Nash, Sintering Mechanisms of Armstrong Prealloyed Ti-6Al-4V Powders, Mater. Sci. Eng. A, 2014, 607, p 409–416

    Article  Google Scholar 

  25. I.M. Robertson and G.B. Schaffer, Swelling During Sintering of Titanium Alloys Based on Titanium Hydride Powder, Powder Metall., 2010, 53(1), p 27–33

    Article  Google Scholar 

  26. H.T. Wang, M. Lefler, Z.Z. Fang, T. Lei, and J.M. Zhang, Titanium and Titanium Alloy via Sintering of TiH2, Key Eng. Mater., 2010, 436, p 157–163

    Article  Google Scholar 

  27. J.E. Smugeresky and D.B. Dawson, New Titanium Alloys for Blended Elemental Powder Processing, Powder Metall., 1981, 30(1), p 87–94

    Google Scholar 

  28. R. Guo, L. Xu, J. Wu, and B.Y. Zong, Microstructural Evolution and Mechanical Properties of Powder Metallurgy Ti–6Al–4V Alloy Based on Heat Response, Mater. Sci. Eng. A, 2015, 639, p 327–334

    Article  Google Scholar 

  29. Y.F. Yang, S.D. Luo, G.B. Schaffer, and M. Qian, Sintering of Ti-10V-2Fe-3Al and Mechanical Properties, Mater. Sci. Eng. A, 2011, 528(22–23), p 6719–6726

    Article  Google Scholar 

  30. G. Steedman and S.F. Corbin, Determining Sintering Mechanisms and Rate of In Situ Homogenisation during Master Alloy Sintering of Ti-6Al-4V, Powder Metall., 2015, 58(1), p 67–80

    Article  Google Scholar 

  31. A. Carman, L.C. Zhang, O.M. Ivasishin, and E.V. Pereloma, Role of Alloying Elements in Microstructure Evolution and Alloying Elements Behaviour during Sintering of a Near-β Titanium Alloy, Mater. Sci. Eng. A, 2011, 528(3), p 1686–1693

    Article  Google Scholar 

  32. F.J.J. van Loo and G.D. Rieck, Diffusion in the Titanium-Aluminium System-I. Interdiffusion Between Solid Al and Ti or Ti-Al Alloys, Acta Metall., 1973, 21, p 61–71

    Article  Google Scholar 

  33. Y. Mishin and C. Herzig, Diffusion in the Ti-Al System, Acta Mater., 2000, 48(3), p 589–623

    Article  Google Scholar 

  34. M. Thuillard, L.T. Tran, and M.A. Nicolet, Al3Ti Formation by Diffusion of Aluminum Through Titanium, Thin Solid Films, 1988, 166, p 21–27

    Article  Google Scholar 

  35. H.W. Kerr, J. Cisse, and G.F. Bolling, On Equilibrium and Non-Equilibrium Peritectic Transformations, Acta Metall., 1974, 22(6), p 677–686

    Article  Google Scholar 

  36. D.J. Harach and K.S. Vecchio, Microstructure Evolution in Metal-Intermetallic Laminate (mil) Composites Synthesized by Reactive Foil Sintering in Air, Metall. Mater. Trans. A, 2001, 32(6), p 1493–1505

    Article  Google Scholar 

  37. W.Y. Yang and G.C. Weatherly, A Study of Combustion Synthesis of Ti-Al Intermetallic Compounds, J. Mater. Sci., 1996, 31(14), p 3707–3713

    Article  Google Scholar 

  38. L. Xu, Y.Y. Cui, Y.L. Hao, and R. Yang, Growth of Intermetallic Layer in Multi-laminated Ti/Al Diffusion Couples, Mater. Sci. Eng. A, 2006, 435–436(4), p 638–647

    Article  Google Scholar 

  39. G. Lütjering, Influence of Processing on Microstructure and Mechanical Properties of (α + β) Titanium Alloys, Mater. Sci. Eng. A, 1998, 243(1–2), p 32–45

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhimeng Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Lu, B., Wang, H. et al. Vacuum Pressureless Sintering of Ti-6Al-4V Alloy with Full Densification and Forged-Like Mechanical Properties. J. of Materi Eng and Perform 27, 282–292 (2018). https://doi.org/10.1007/s11665-017-3019-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-3019-6

Keywords

Navigation