Skip to main content
Log in

Experimental and Diffusion Simulation for the Homogenization of As-cast Mg-Al, Mg-Zn, and Mg-Al-Zn Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Annealing of as-cast Mg-Al alloys (3, 6, and 9 wt pct Al) and Mg-Zn alloys (1.5, 4.0, and 5.5 wt pct Zn) was performed at 603 K and 673 K (330 °C and 400 °C) for 1, 2, 4, and 8 hours to systematically investigate the variation of second phase fraction and solute concentration profile in Mg matrix using SEM image analysis and EMPA-WDS, respectively. To calculate second phase fraction and solute concentration profile, a diffusion model considering the moving boundary was constructed, and the experimental results were successfully explained by the model. The expansion of model to ternary Mg-Al-Zn alloy is also described. This model can be used for the optimization of homogenization process of the Mg alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. I.-H. Jung, W. Bang, I.J. Kim, H.J. Sung, W.J. Park, D. Choo, and S. Ahn: Mg Technol. TMS, 2007, pp. 85–88.

  2. M. Aljarrah, E. Essadiqi, D.H. Kang, I.-H. Jung, Mater. Sci. Forum, 2011, vol. 690, pp. 331–34.

    Article  Google Scholar 

  3. E. Essadiqi, I.-H. Jung, and M. Wells: in Advance in Wrought Magnesium Alloys: Fundamentals of Processing, Properties and Applications, C. Bettles and M. Barnett, eds., Woodhead Publishing, Cambridge, 2012, pp. 212–303.

  4. S. Celotto, T.J. Bastow, Acta Mater. 2001, vol. 49, pp. 41–51.

    Article  Google Scholar 

  5. L.A. Dobrzanski, T. Tanski, L. Cizek, J. Madejski, J. Achieve. Mater. Manuf. Eng. 2009, vol. 32, pp. 203–210.

    Google Scholar 

  6. L.A. Dobrzanski, T. Tanski, J. Trzaska, J. Comput. Mater. Sci. Surf. Eng.. 2007, vol. 1, pp. 540–54.

    Google Scholar 

  7. T. Zhu, Z.W. Chen, W. Gao, J. Mater. Eng. Perform. 2010, vol. 19, pp. 860–67.

    Article  Google Scholar 

  8. F. Vermolen and S.V.D. Zwaag: Mater. Sci. Eng. A, 1996, vol. 220, pp. 140–46.

  9. F. Vermolen, K. Vuik, and S.V.D. Zwaag: Mater. Sci. Eng. A, 1998, vol. 254, pp. 13–32.

  10. F. Vermolen, K. Vuik, J. Comput. Appl. Math. 1998, vol. 93, pp. 123–43.

    Article  Google Scholar 

  11. F. Vermolen, C. Vuik, J. Comput. Appl. Math. 2000, vol. 126, pp. 233-54.

    Article  Google Scholar 

  12. M.M. Avedesian and H. Baker: ASM Specialty Handbook, Magnesium and Magnesium Alloys, ASM International, Materials Park, OH, 1999.

  13. M. Paliwal, I.-H. Jung, Acta Mater. 2013, vol. 61(13), pp. 4848-860.

    Article  Google Scholar 

  14. M. Paliwal, I.-H. Jung, J. Crystal. Growth, 2014, vol. 394, pp. 28-38.

    Article  Google Scholar 

  15. M. Paliwal, D.H. Kang, E. Essadiqi, and I.-H. Jung: Metall. Mater. Trans. A. 2014, vol. 45A, pp. 3596–3608.

    Article  Google Scholar 

  16. S.K. Das, Y.M. Kim, T.K. Ha, R. Gauvin, I.-H. Jung, Metall. Mater. Trans. A. 2013, vol. 44A(6), pp. 2539–547.

    Article  Google Scholar 

  17. S.K. Das, Y.M. Kim, T.K. Ha, I.-H. Jung, CALPHAD, 2013, vol. 42, pp. 51–8.

    Article  Google Scholar 

  18. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, I.-H. Jung, Y. B. Kang, R. B. Mahfoud, J. Melançon, A. D. Pelton, C. Robelin and S. Petersen, CALPHAD, 2009, vol. 33, pp. 295–311.

    Article  Google Scholar 

  19. W.D. Murray and F. Landis, Trans. ASME. J. Heat Transfer, 1959, vol. 81C, pp. 106–112.

    Google Scholar 

  20. B.J. Lee: J. Phase Equilib., 2001, vol. 22, pp. 241–46.

  21. G.D. Verros and N.A. Malamatarisb: Comput. Mater. Sci., 2002, vol. 24, pp. 380–92.

    Article  Google Scholar 

  22. C. Schuh, Metall. Mater. Trans. A, 2000, vol 31A, pp. 2411-21.

    Article  Google Scholar 

  23. S.K. Wong, C.C. Chan and S.K.C. Wong, Oxid. Met., 1996, vol. 47, pp. 427–44.

    Article  Google Scholar 

  24. R.M. Furzeland, J. Inst. Maths Appl., 1980, vol. 26, pp. 411–29.

    Article  Google Scholar 

  25. A. Das, I. Manna and S.K. Pabi, Acta Mater., 1999, vol. 47, pp. 1379–88.

    Article  Google Scholar 

  26. S.K. Das, Y.B. Kang, T.K. Ha, I.-H. Jung, Acta Mater. 2014 vol. 71, pp. 164–175.

    Article  Google Scholar 

  27. B.J. Lee, J. Met. Mater., 1999, vol. 5(1), pp. 1–15.

    Article  Google Scholar 

  28. J. Combronde and G. Brebec: Acta Metall., 1971, vol. 19, pp. 1393–99.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the General Motor of Canada and the Natural Sciences and Engineering Research Council of Canada (NSERC) is greatly appreciated. This work was also partially supported by the Fundamental Research and Development Program for Core Technology of Materials by the Ministry of Knowledge Economy of the Republic of Korea (Grant No. 10037273). The authors greatly acknowledge Dr. E. Essadiqi at CANMET and Mr. Shi Lang at McGill University, Montreal, for Cu mold plate and wedge-casting samples and help with the micro-probe analysis (EPMA), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Ho Jung.

Additional information

Manuscript submitted January 23, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S.K., Kang, DH. & Jung, IH. Experimental and Diffusion Simulation for the Homogenization of As-cast Mg-Al, Mg-Zn, and Mg-Al-Zn Alloys. Metall Mater Trans A 45, 5212–5225 (2014). https://doi.org/10.1007/s11661-014-2443-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2443-6

Keywords

Navigation