Skip to main content
Log in

The Evolution of As-cast Microstructure of Ternary Mg-Al-Zn Alloys: An Experimental and Modeling Study

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A numerical formulation of solidification model which can predict the microsegregation and microstructural features for multicomponent alloys is presented. The model incorporates the kinetic features during solidification such as solute back diffusion, dendrite tip undercooling, and secondary arm coarsening. The model is dynamically linked to thermodynamic library for accurate input of thermodynamic data. The modeling results are tested against the directional solidification experiments for Mg-Al-Zn alloys. The experiments were conducted in the cooling rate range of 0.13 to 2.33 K/s and microstructural features such as secondary arm spacing, primary dendrite arm spacing, second phase fraction, and microsegregation were compared with the modeling results. Based on the model and the experimental data, a solidification map was built in order to provide guidelines for as-cast microstructural features of Mg-Al-Zn alloys in a wide range of solidification conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.O. Pekguleryuz and A.A. Kaya: Proceedings 6th International Conference on Magnesium Alloys and their Applications, 2004, pp. 74–93.

  2. I.-H. Jung, W. Bang, I.J. Kim, H.I. Sung, W.J. Park, D. Choo, S. Ahn, R.S. Beals: Magnesium Technology, 2007, TMS, Orlando, FL, pp. 85–88.

    Google Scholar 

  3. Y. Nakaura and K. Ohori: Mater. Sci. Forum., 2005, pp. 419–26.

  4. Y. Nakaura, A. Watanabe and K. Ohori: Mater. Trans., 2006, vol. 47(7), pp. 1743–49.

    Article  Google Scholar 

  5. S.S. Park, D.H. Kang, G.T. Bae and N.J. Kim: Mater. Sci. Forum, 2005, vol. 488–89, pp. 431–34.

    Article  Google Scholar 

  6. M. Masoumi, F. Zarandi and M. Pekguleryuz: Scripta Mater., 2010, vol. 62 pp. 823–26.

    Article  Google Scholar 

  7. M. Paliwal and I.-H Jung: Acta Mater., 2013, vol. 61(13), pp. 4848–60.

    Article  Google Scholar 

  8. M. Paliwal, D.H. Kang, E. Essadiqi, and I.-H Jung: Metall. Mater. Trans. A, 2014, DOI:10.1007/s11661-014-2265-6

  9. S. Petersen and K. Hack: Int. J. Mater. Res., 2007, vol. 98, pp. 935–45.

    Article  Google Scholar 

  10. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.-H. Jung, Y-B. Kang, J. Melançon, A.D. Pelton, C. Robelin and S. Petersen: CALPHAD, 2009, vol. 31, pp. 295–311.

    Article  Google Scholar 

  11. J. Lacaze and G. Lesoult: Mater. Sci. Eng., 1993, vol. A173, pp. 119–22.

    Article  Google Scholar 

  12. X. Yan, F. Yie, M. Chu and Y.A. Chang: Mater. Sci. Eng., 2001, vol. A302, pp. 268–74.

    Article  Google Scholar 

  13. C. Zhang, D. Ma, K.-S. Wu, H.-B. Cao, S. Kou, Y.A. Chang and X.-Y. Yan: Intermetallics, 2007, vol. 15(10), pp. 1395–1400.

    Article  Google Scholar 

  14. D. Mirković and R. Schmid-Fetzer: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 974–81.

    Article  Google Scholar 

  15. M. Paliwal and I.-H Jung: J. Cryst. Growth, 2014, vol. 394, pp. 28–38.

    Article  Google Scholar 

  16. W. Kurz, B. Giovanola and R. Trivedi: Act. Metall., 1986, vol. 34, pp. 823–30.

    Article  Google Scholar 

  17. M. Rappaz, S.A. David, J.M. Vitek and L.A. Boatner: Metall. Mater. Trans. A, 1990, vol. 21A, pp. 1767–82.

    Article  Google Scholar 

  18. T.F. Bower, H.D. Brody and M.C. Flemings: Trans. AIME, 1996, vol. 236, pp. 624–34.

    Google Scholar 

  19. W. Kurz and D.J. Fisher: Fundamentals of Solidification, 3rd ed. Trans. Tech. Publications, Aedermannsdorf, Switzerland, 1992.

    Google Scholar 

  20. A. Roosz, E. Halder and H.E. Exner: Mater. Sci. Tech., 1986, vol. 2, pp. 1149–55.

    Article  Google Scholar 

  21. A. Roosz, E. Halder and H.E. Exner, Acta Metall., 1990, vol. 38, pp. 375–80.

    Article  Google Scholar 

  22. R.C. Beaverstock: Solidification Processing, 1997, pp. 321–26.

  23. V.R. Voller: Int. J. Heat Mass Transfer, 2000, vol. 197, pp. 2047–52.

    Article  Google Scholar 

  24. T.F. Bower, H.D. Brody and M.C. Flemings: Trans. AIME, 1996, vol. 236, pp. 615–24.

    Google Scholar 

  25. E. Scheil: Z. Metallk., 1942, vol. 34, pp. 70–72.

    Google Scholar 

  26. S.K. Das, Y.-M. Kim, T.K. Ha, R. Gauvin, and I.-H Jung: Metall. Mater. Trans. A, 2013, vol. 43A, pp. 2539–47.

    Article  Google Scholar 

  27. S.K. Das, Y.-M. Kim, T.K. Ha and I.-H Jung: CALPHAD, 2013, vol. 42, pp. 51–58.

    Article  Google Scholar 

  28. A. Einstein: Ann. Phys., 1905, vol. 17, pp. 549–60.

    Article  Google Scholar 

  29. M.F. Culpin: Proc. Phys. Soc., 1957, vol. 70, pp. 1079–86.

    Article  Google Scholar 

  30. S. Wang, D. Liu, Y. Du, L. Zhang, Q. Chen and A. Engström, Int. J. Mater. Res., 2013, vol. 104, pp. 721–35.

    Article  Google Scholar 

  31. M. Masoumi and M. Pekguleryuz: AFS Trans., vol. 117, 2009, pp. 617–26.

    Google Scholar 

  32. Y. He, A. Javaid, E. Essadiqi and M. Shehata: Can. Metall. Q., 2009, vol. 48(2), pp. 145–55.

    Article  Google Scholar 

  33. COMSOL 3.3: Heat Transfer user’ guide, COMSOL-AB.

  34. K. Pettersen, O. Lohne, and N. Ryum: Metall. Trans. A. A, 1990, vol. 21A, pp. 221–30.

    Article  Google Scholar 

  35. H.M. Tensi and R. Rösch: Magnesium Alloys and Their Applications, DGM, Oberursel, Germany, 1992, pp. 283–89.

    Google Scholar 

  36. C. Labrecque, R. Angers, R. Tremblay and D. Dubé: Can. Metall. Q., 1997, vol. 36, pp. 169–75.

    Article  Google Scholar 

  37. D. Dubé, A. Couture, Y. Carbonneau, M. Fiset, R. Angers and R. Tremblay: Int. J. Cast Metals Res., 1998, vol. 11, pp. 139–44.

    Google Scholar 

  38. H. Sasaki, M. Adachi, T. Sakamoto, and A. Takimoto: Proceedings 53rd Annual World Magnesium Conference, McLean, VA, 1996, pp. 86–92.

  39. J.S. Kim, M. Isac and R.I.L. Guthrie: Mg Technology, 2004 TMS, Charlotte, NC, pp. 247–55.

    Google Scholar 

  40. W.P. Sequeira, M.T. Murray, G.L. Dunlop, and D.H. StJohn: Proceedings TMS Symposium on Automotive Alloys, Warrendale PA, 1997, pp. 169–83.

  41. C.H. Caceres, C.J. Davidson, J.R. Griffiths and C.L. Newton: Mater. Sci. Eng. A, 2002, vol. 35A, pp. 344–55.

    Article  Google Scholar 

  42. W. Kurz and D.J. Fisher: Acta Metall., 1980, vol. 29, pp. 11–20.

    Article  Google Scholar 

  43. R. Trivedi: Metall. Trans. 1984; vol.15, pp. 977–82.

    Article  Google Scholar 

  44. J.D. Hunt: International Conference on Solidification and Casting of Metals, The Metals Society, London, 1979, pp. 3–9.

  45. J.S. Langer and H. Muller-Krumbhaar: J. Cryst. Growth, 1977, vol. 42, pp. 11–4.

    Article  Google Scholar 

  46. W.W. Mullins and R.F. Sekerka: J. Appl. Phys., 1964, vol. 35, pp. 444–52.

    Article  Google Scholar 

  47. J.D. Hunt: Mater. Sci. Eng., 1984, vol. 65, pp.75–82.

    Article  Google Scholar 

  48. A. Hadadzadeh: Ph.D. Thesis, University of Waterloo, 2013.

Download references

Acknowledgments

This research was supported by funding from the NSERC Magnesium Strategic Research Network (MagNET) grant, Strategic Network Enhancement Initiative (SNEI) program, and General Motors of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Ho Jung.

Additional information

Manuscript submitted September 4, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paliwal, M., Kang, D.H., Essadiqi, E. et al. The Evolution of As-cast Microstructure of Ternary Mg-Al-Zn Alloys: An Experimental and Modeling Study. Metall Mater Trans A 45, 3596–3608 (2014). https://doi.org/10.1007/s11661-014-2288-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2288-z

Keywords

Navigation