Skip to main content
Log in

Solidification Paths and Phase Components at High Temperatures of High-Zn Al-Zn-Mg-Cu Alloys with Different Mg and Cu Contents

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Studies were carried out systematically on a series of Al-8.5 wt pct Zn-xMg-yCu alloys (x is about 1.5, 2.0, and 2.5 wt pct, and y is about 1.5, 2.0, 2.5, and 2.9 wt pct). The effects of alloying elements Mg and Cu on the microstructures of as-cast and homogenized alloys were investigated using the computational/experimental approach. It shows that Mg(Zn,Al,Cu)2 (σ) phase can exist in all the as-cast alloys without any observable Mg32(Al,Zn)49/Al2Mg3Zn3 (T) or Al2CuMg (S) phase, whereas Al2Cu (θ) phase is prone to exist in the alloys with low Mg and high Cu contents. Thermodynamic calculation shows that the real solidification paths of the designed alloys fall in between the Scheil and the equilibrium conditions, and close to the former. After the long-time homogenization [733 K (460 °C)/168 hours] and the two-step homogenization [733 K (460 °C)/24 hours + 748 K (475 °C)/24 hours], the phase components of the designed alloys are generally consistent with the calculated phase diagrams. At 733 K (460 °C), the phase components in the thermodynamic equilibrium state are greatly influenced by Mg content, and the alloys with low Mg content are more likely to be in single-Al phase field even if the alloys contain high Cu content. At 748 K (475 °C), the dissolution of the second phases is more effective, and the phase components in the thermodynamic equilibrium state are dominated primarily by (Mg + Cu) content, except the alloys with (Mg + Cu) ≳ 4.35 wt pct, all designed alloys are in single-Al phase field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. E.A. Starke and J.T. Staley: Prog. Aerosp. Sci., 1996, vol. 32, pp. 131–72.

    Article  Google Scholar 

  2. J. Liu: Mater. Sci. Forum, 2006, vols. 519–521, pp. 1233–38.

    Article  Google Scholar 

  3. W.G. Roeseler, B. Sarh, and M.U. Kismarton: Proceedings of the 16th International Conference on Composite Materials, 2007.

  4. A.S. Warren: Mater. Forum, 2004, vol. 28, pp. 24-31.

    Google Scholar 

  5. T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, and B. Baroux: Acta Mater., 2010, vol. 58, no. 1, pp. 248–60.

    Article  Google Scholar 

  6. V. Raghavan (2007) J. Phase Equilib. Diff. 28(2):211–12.

    Article  Google Scholar 

  7. [7] N.A. Belov: Met. Sci. Heat Treat., 2012, vol. 53, nos. 9–10, pp. 420-27.

    Article  Google Scholar 

  8. [8] Aluminum Association: International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys, The Aluminum Association, Arlington, VA, 2009.

    Google Scholar 

  9. [9] D. Dumont, A. Deschamps, and Y. Brechet: Mater. Sci. Eng. A, 2003, vol. 356, no. 1, pp. 326-36.

    Article  Google Scholar 

  10. [10] Y. Deng, Z.M. Yin, and F.G. Cong: Intermetallics, 2012, vol. 26, pp. 114-21.

    Article  Google Scholar 

  11. [11] D.K. Xu, N. Birbilis, D. Lashansky, P.A. Rometsch, and B.C. Muddle: Corros. Sci., 2011, vol. 53, no. 1, pp. 217-25.

    Article  Google Scholar 

  12. [12] F.Y. Xie, X.Y. Yan, L. Ding, F. Zhang, S.L. Chen, M.G. Chu, and Y.A. Chang: Mater. Sci. Eng. A, 2003, vol. 355, pp. 144-53.

    Article  Google Scholar 

  13. [13] F.H. Gao, G. Zhao, W.M. Bian, and N. Tian: Mater. Sci. Forum, 2010, vols. 638–642, pp. 384-89.

    Article  Google Scholar 

  14. [14] S.T. Lim, Y.Y. Lee, and I.S. Eun: Mater. Sci. Forum, 2005, vols. 475–479, pp. 369-72.

    Article  Google Scholar 

  15. [15] S.T. Lim, I.S. Eun, and S.W. Nam: Mater. Trans., 2003, vol. 44, no. 1, pp. 181-87.

    Article  Google Scholar 

  16. [16] X.M. Li and M.J. Starink: Mater. Sci. Forum, 2000, vols. 331–337, pp. 1071-6.

    Article  Google Scholar 

  17. H.Y. Liang: Ph.D. Thesis, University of Wisconsin-Madison, 1998.

  18. [18] X.G. Fan, D.M. Jiang, Q.C. Meng, and Z. Li: Mater. Lett., 2006, vol. 60, pp. 1475-79.

    Article  Google Scholar 

  19. [19] L.J. Wang, D.K. Xu, P.A. Rometsch, S.X. Gao, Y. Zhang, Z.B. He, M.J. Couper, and B.C. Muddle: Mater. Sci. Forum, 2011, vol. 693, pp. 276-81.

    Article  Google Scholar 

  20. [20] C. Mondal and A.K. Mukhopadhyay: Mater. Sci. Eng. A, 2005, vol. 391, pp. 367-76.

    Article  Google Scholar 

  21. [21] Z.A. Wang, M.P. Wang, W.C. Yang, Q. Zhang, X.F. Sheng, and Z. Li: J. Mater. Eng., 2010, vol. 5, pp. 56-63.

    Google Scholar 

  22. [22] C. Zhang, H.B. Cao, G.P. Cao, S. Kou, and Y.A. Chang: JOM, 2008, vol. 60, no. 12, pp. 48-51.

    Article  Google Scholar 

  23. [23] H.B. Cao, C. Zhang, J. Zhu, G.P. Cao, S. Kou, R. Schmid-Fetzer, and Y.A. Chang: Scripta Mater., 2008, vol. 58, no. 5, pp. 397-400.

    Article  Google Scholar 

  24. [24] W. Cao, S.L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, and W.A. Oates: CALPHAD, 2009, vol. 33, no. 2, pp. 328-42.

    Article  Google Scholar 

  25. [25] W.X. Shu, J.C. Liu, L.G. Hou, H. Cui, J.T. Liu, and J.S. Zhang: Int. J. Miner. Metall. Mater., 2014, vol. 21, no. 12, pp. 1215-21.

    Article  Google Scholar 

  26. [26] J.D. Robson: Mater. Sci. Eng. A, 2004, vol. 382, pp. 112-21.

    Article  Google Scholar 

  27. [27] R. Ghiaasiaan, X. Zeng, and S. Shankar: Mater. Sci. Eng. A, 2014, vol. 594, pp. 260–77.

    Article  Google Scholar 

  28. [28] X.G. Fan, D.M. Jiang, Q.C. Meng, B.Y. Zhang, and T. Wang: Trans. Nonferrous Met. Soc. China, 2006, vol. 16, pp. 577–81.

    Article  Google Scholar 

  29. A.K. Mukhopadhyay, G.M. Reddy, K.S. Prasad, V.K. Varma, and C. Mondal: Proceedings of the 9th International Conference on Aluminium Alloys, 2004.

  30. [30] A.K. Mukhopadhyay: Mater. Sci. Forum, 2012, vol. 710, pp. 50-65.

    Article  Google Scholar 

  31. [31] H. Möller and G. Govender: Sol. St. Phen., 2013, vol. 192, pp. 173-78.

    Google Scholar 

  32. [32] M. Gazizov, V. Teleshov, V. Zakharov, and R. Kaibyshev: J. Alloy. Compd., 2011, vol. 509, no. 39, pp. 9497–9507.

    Article  Google Scholar 

  33. [33] A.F. Norman, K. Hyde, F. Costello, S. Thompson, S. Birley, and P.B. Prangnell: Mater. Sci. Eng. A, 2003, vol. 354, no. 1, pp. 188-98.

    Article  Google Scholar 

  34. B.H. Zhu: Ph.D. Thesis, General Research Institute for Nonferrous Metals, 2011.

  35. [35] Y.A. Chang, S.L. Chen, F. Zhang, X.Y. Yan, F.Y. Xie, R. Schmid-Fetzer, and W.A. Oates: Prog. Mater. Sci., 2004, vol. 49, no. 3, pp. 313-45.

    Article  Google Scholar 

  36. [36] R. Deiasi and P.N. Adler: Metall. Trans. A, 1977, vol. 8, no. 7, pp. 1177-83.

    Article  Google Scholar 

  37. [37] X.J. Jiang, B. Noble, V. Hansen, and J. Tafto: Met. Trans. A, 2001, vol. 32, pp. 1063-73.

    Article  Google Scholar 

  38. [38] Y.A. Chang: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 7-39.

    Article  Google Scholar 

  39. [39] T. Kraft and Y.A. Chang: JOM, 1997, vol. 49, no. 12, pp. 20-28.

    Article  Google Scholar 

  40. [40] S.L. Chen, F. Zhang, S. Daniel, F.Y. Xie, X.Y. Yan, Y.A. Chang, R. Schmid-Fetzer, and W.A. Oates: JOM, 2003, vol. 55, no. 12, pp. 48-51.

    Article  Google Scholar 

  41. [41] D.K. Xu, P.A. Rometscha, and N. Birbilis: Mater. Sci. Eng. A, 2012, vol. 534, pp. 234-43.

    Article  Google Scholar 

  42. [42] N.K. Li and J.Z. Cui: Nonferrous Met. Soc. China, 2008, vol. 18, no. 4, pp. 769–73.

    Article  Google Scholar 

  43. [43] F.H. Gao, N.K. Li, N. Tian, Q. Sun, X.D. Liu, and G. Zhao: Trans. Noferrous Met. Soc. China, 2008, vol. 18, pp. 321-26.

    Article  Google Scholar 

  44. [44] X.L. Han, B.Q. Xiong, Y.A. Zhang, Z.H. Li, B.H. Zhu, and F. Wang: Trans. Mater. Heat Treat. (China), 2010, vol. 31, no. 11, pp. 104-08.

    Google Scholar 

  45. [45] Y.L. Deng, L. Wan, L.H. Wu, Y.Y. Zhang, and X.M. Zhang: J. Mater. Sci., 2011, vol. 46, no. 4, pp. 875-81.

    Article  Google Scholar 

  46. [46] W.B. Li, Q.L. Pan, Y.P. Xiao, Y.B. He, and X.Y. Liu: Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 2127-33.

    Article  Google Scholar 

  47. [47] Y. Liu, B.H. Zhu, Y.A. Zhang, X.W. Li, H.W. Liu, and B.Q. Xiong: Chinese J. Rare Met., 2012, vol. 36, no. 4, pp. 529-34.

    Google Scholar 

  48. [48] Y. Han, L. Li, S.Z. Mu, Z.Z. Deng, Y.K. Le, and X.M. Zhang: Special Cast. Nonferr. Alloy., 2010, vol. 30, no. 10, pp. 891-93.

    Google Scholar 

  49. [49] Y.T. Zuo, F. Wang, B.Q. Xiong, Y.A. Zhang, B.H. Zhu, H.W. Liu, and Z.H. Li: Chinese J. Nonferr. Met., 2010, vol. 20, no. 5, pp. 820-26.

    Google Scholar 

  50. [50] Y. Du, Y.A. Chang, B.Y. Huang, W.P. Gong, Z.P. Jin, H.H. Xu, Z.H. Yuan, Y. Liu, Y.H. He, and F.Y. Xie: Mater. Sci. Eng. A, 2003, vol. 363, pp. 140-51.

    Article  Google Scholar 

  51. [51] W.D. Callister and D.G. Rethwisch: Materials Science and Engineering: An Introduction, 7th ed., Wiley, New York, NY, 2007.

    Google Scholar 

  52. [52] E.A. Brandes and G.B. Brook: Smithells Metals Reference Book, 7th ed., Butterworth-Heinemann, London, U.K., 1992.

    Google Scholar 

  53. [53] N.A. Belov, D.G. Eskin, and A.A. Aksenov: Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys, Elsevier, Oxford, U.K., 2005.

    Google Scholar 

  54. [54] J.A. Wagner and R.N. Shenoy: Metall. Mater. Trans. A, 1991, vol. 22A, pp. 2809-18.

    Article  Google Scholar 

  55. D.K. Xu, N. Birbilis, and P.A. Rometsch: Corros. J. Sci. Eng., 2012, vol. 68 (3), pp. 035001-1–10.

Download references

Acknowledgments

The authors thank the financial support from the Fundamental Research Funds for the Central Universities (FRF-TD-12-001) and the National High Technology Research and Development Program of China (863 Program, No. 2013AA032403). The funds from Beijing Municipal Commission of Education for Common Construction Projects and from State Key Laboratory for Advanced Metals and Materials of China are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Hou.

Additional information

Manuscript submitted October 31, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, W.X., Hou, L.G., Liu, J.C. et al. Solidification Paths and Phase Components at High Temperatures of High-Zn Al-Zn-Mg-Cu Alloys with Different Mg and Cu Contents. Metall Mater Trans A 46, 5375–5392 (2015). https://doi.org/10.1007/s11661-015-3050-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3050-x

Keywords

Navigation