Skip to main content

Advertisement

Log in

Eucalyptus dunnii Maiden plant regeneration via shoot organogenesis on a new basal medium based on the mineral composition of young stump shoots

  • Micropropagation
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Eucalyptus dunnii is an excellent alternative for afforestation and reforestation in frost-prone areas; however, it has limitations in the availability of propagation material. Given the great potential of tissue culture techniques for plant propagation and plant genetic transformation, the competence for in vitro organogenesis from E. dunnii cotyledons and hypocotyls was assessed. Several combinations of 6-benzylaminopurine (BAP) plus α-naphthalene acetic acid (NAA) or indole-3-acetic acid (IAA) were added (0, 0.1, 0.5, and 1 mg l−1) to a specifically developed basal medium. Moreover, the effect of the hypocotyl segments position (distal and proximal) on bud and callus regeneration was studied. Finally, microcuttings obtained from in vitro multiplication of the regenerated buds were treated with different dosages of indole-3-butyric acid (IBA) or NAA (powder based) and rooted under ex vitro conditions. Bud regeneration was observed only in hypocotyl segments, where dosages of 0.5 mg l−1 BAP plus 0.5 mg l−1 NAA or 0.5 mg l−1 IAA and distal segments resulted in higher bud regeneration rates. Histological analyses suggest that callus regeneration areas in hypocotyl explants recreate an appropriate niche for the development of pluripotent cells that give rise to buds and shoots. Either IBA or NAA treatments failed to significantly improved the ex vitro rooting of E. dunnii microcuttings, whereas >50% microcuttings rooted without application of growth regulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Almeida M, Almeida CV, Graner E, Brondani GE, Abreu-Tarazi MF (2012) Pre-procambial cells are niches for pluripotent and totipotent stem-like cells for organogenesis and somatic embryogenesis in the peach palm: a histological study. Plant Cell Rep 31:1449–1452. doi:10.1007/s00299-012-1264-6

    Article  Google Scholar 

  • Arnold RJ, Luo J, Clarke B (2004) Trials of cold-tolerant eucalypt species in cooler regions of south central China. ACIAR Technical Reports 57, Canberra

  • Arroyo R, Revilla MA (1991) In vitro plant regeneration from cotyledon and hypocotyl segments in two bell pepper cultivars. Plant Cell Rep 10:414–416. doi:10.1007/BF00232614

    Article  CAS  PubMed  Google Scholar 

  • Arya HC, Shekhawat NS (1986) Clonal multiplication of tree species in the Thar desert through tissue culture. For Ecol Manag 16:201–208. doi:10.1016/0378-1127(86)90020-4

    Article  CAS  Google Scholar 

  • Azmi A, Noin M, Landre P, Prouteau M, Boudet AM, Chriqui D (1997) High frequency plant regeneration from Eucalyptus globulus Labill. hypocotyls: ontogenesis and ploidy level of the regenerants. Plant Cell Tissue Organ Cult 51:9–16. doi:10.1023/A:1005920807555

    Article  Google Scholar 

  • Bacchetta L, Aramini M, Bernardini C, Rugini E (2008) In vitro propagation of traditional Italian hazelnut cultivars as a tool for the valorization and conservation of local genetic resources. HortSci 43:562–566

    Google Scholar 

  • Baltierra XC, Montenegro G, García E (2004) Ontogeny of in vitro rooting processes in Eucalyptus globulus. In Vitro Cell Dev Biol Plant 40:499–503. doi:10.1079/IVP2004559

    Article  Google Scholar 

  • Bandyopadhyay S, Cane K, Rasmussen G, Hamill JD (1999) Efficient plant regeneration from seedling explants of two commercially important temperate eucalypt species—Eucalyptus nitens and E. globulus. Plant Sci 140:189–198. doi:10.1016/S0168-9452(98)00221-0

    Article  CAS  Google Scholar 

  • Barrueto Cid LP, Machado ACM, Carvalheira SRC, Brasileiro ACM (1999) Plant regeneration from seedling explants of Eucalyptus grandis × Eucalyptus urophylla. Plant Cell Tissue Organ Cult 56:17–23. doi:10.1023/A:1006283816625

    Article  Google Scholar 

  • Barry-Etienne D, Bertrand B, Vásquez N, Etienne H (2002) Comparison of somatic embryogenesis-derived coffee (Coffea arabica L.) plantlets regenerated in vitro or ex vitro conditions: morphological, mineral and water characteristics. Ann Bot 90:77–85. doi:10.1093/aob/mcf149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bennett IJ, McComb JA (1982) Propagation of jarrah (Eucalyptus marginata) by organ and tissue culture. Aust For Res 12:121–127

    Google Scholar 

  • Bhojwani SS, Razdan MK (1996) Plant tissue culture: theory and practice, a revised edition. Elsevier, Amsterdam, pp 112–113

    Google Scholar 

  • Billard CE, Lallana VH (2005) Multiplicación in vitro de Eucalyptus dunnii. Cienc docencia tecnol 16:199–216. http://www.redalyc.org/articulo.oa?id=14503008. Accessed: 8 Feb 2014

  • Box GEP, Cox DR (1964) An analysis of transformations. J Roy Stat Soc B Met 26:211–234

    Google Scholar 

  • Bravo VCD (2005) Controle genético e histogênese na regeneração de progênies de Eucalyptus grandis in vitro. Dissertation, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, pp 48–60

  • Bravo VCD, Gonçalves AN, dos Santos Dias CT, Vencovsky R (2008) Controle genético da regeneração in vitro em progênies de Eucalyptus grandis. Ciênc Rural 38:2181–2185. doi:10.1590/S0103-84782008000800014

    Article  Google Scholar 

  • Brondani GE, Dutra LF, Wendling I, Grossi F, Hansel FA, Araújo MA (2011) Micropropagation of an Eucalyptus hybrid (Eucalyptus benthamii × Eucalyptus dunnii). Acta Sci Agron 33:655–663. doi:10.4025/actasciagron.v33i4.8317

    Article  CAS  Google Scholar 

  • Brondani GE, Benedini Baccarin FJ, Wit Ondas HW, Stape JL, Gonçalves AN, Almeida M (2012a) Low temperature, IBA concentrations and optimal time for adventitious rooting of Eucalyptus benthamii mini-cuttings. J For Res 23:583–592. doi:10.1007/s11676-012-0298-5

    Article  CAS  Google Scholar 

  • Brondani GE, Wit Ondas HW, Baccarin FJB, Gonçalves AN, Almeida M (2012b) Micropropagation of Eucalyptus benthamii to form a clonal micro-garden. In Vitro Cell Dev Biol Plant 48:478–487. doi:10.1007/s11627-012-9449-9

    Article  CAS  Google Scholar 

  • Correia D (1993) Crescimento e desenvolvimento de gemas na multiplicação de Eucalyptus spp in vitro em meio de cultura líquido e sólido. Dissertation, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 113 p

  • Correia D, Gonçalves AN, Couto HYZ, Ribeiro MC (1995) Efeito do meio de cultura líquido e sólido no crescimento e desenvolvimento de gemas de Eucalyptus grandis × Eucalyptus urophylla na multiplicação in vitro. IPEF 48/49:107–116. http://ipef.br/publicacoes/scientia/nr48-49/cap11.pdf. Accessed: 11 Dec 2013

  • De Smet I, Beeckman T (2011) Asymmetric cell division in land plants and algae: the driving force for differentiation. Nat Rev Mol Cell Biol 12:177–188. doi:10.1038/nrm3064

    Article  PubMed  Google Scholar 

  • Dibax R, De Loyola Eisfeld C, Cuquel F, Koehler H, Quoirin M (2005) Plant regeneration from cotyledonary explants of Eucalyptus camaldulensis. Sci Agric 62:406–412. doi:10.1590/S0103-90162005000400016

    Article  Google Scholar 

  • Dibax R, Quisen RC, Bona C, Quoirin M (2010) Plant regeneration from cotyledonary explants of Eucalyptus camaldulensis Dehn and histological study of organogenesis in vitro. Braz Arch Biol Technol 53:311–318. doi:10.1590/S1516-89132010000200009

    Article  CAS  Google Scholar 

  • Everitt BS, Hothorn T (2006) A handbook of statistical analyses using R, 1st edn. Chapman & Hall/CRC, Boca Raton, pp 55–158

    Book  Google Scholar 

  • Fári M, Czakó M (1981) Relationship between position and morphogenetic response of pepper hypocotyls explants cultured in vitro. Sci Hort 15:207–213. doi:10.1016/0304-4238(81)90028-5

    Article  Google Scholar 

  • Fisher DB (1968) Protein staining of ribboned epon section for light microscopy. Histochem Cell Biol 16:92–96

    Article  CAS  Google Scholar 

  • Gamborg OL, Murashige T, Thorpe TA, Vasil JK (1976) Plant tissue culture media. In Vitro Cell Dev Biol Plant 12:473–478. doi:10.1007/BF02796489

    Article  CAS  Google Scholar 

  • Girijashankar V (2011) Genetic transformation of Eucalyptus. Physiol Mol Biol Plants 17:9–23. doi:10.1007/s12298-010-0048-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Glocke P, Collins G, Sedgley M (2006) 6-Benzylamino purine stimulates in vitro shoot organogenesis in Eucalyptus erythronema, E. stricklandii and their interspecific hybrids. Sci Hort 109:339–344. doi:10.1016/j.scienta.2006.05.010

    Article  CAS  Google Scholar 

  • Gonçalves JC, Diogo G, Amâncio S (1998) In vitro propagation of chestnut (Castanea sativa × C. crenata): effects of rooting treatments on plant survival, peroxidase activity and anatomical changes during adventitious root formation. Sci Hort 72:265–275. doi:10.1016/S0304-4238(97)00136-2

    Article  Google Scholar 

  • Graça MEC (1987) Avaliação do florescimento e do potencial de produção de sementes de Eucalyptus dunnii Maiden no Brasil. Bol Pesqui Flores 14:2–12. http://ainfo.cnptia.embrapa.br/digital/bitstream/CNPF-2009-09/4989/1/graca.pdf. Accessed: 13 March 2013

  • Graça MEC (1997) Enraizamento in vitro de brotações de Eucalyptus dunnii utilizando altas concentrações de auxinas. Pesquisa em andamento EMBRAPA-CNPF 48:1–3. http://www.agencia.cnptia.embrapa.br/recursos/pesq-andam-48ID-p6sAOxkirU.PDF. Accessed: 4 July 2013

  • Gribble K, Conroy JP, Holford P, Milham PJ (2002) In vitro uptake of mineral by Gypsophila paniculata and hybrid eucalypt, and relevance to media mineral formulation. Aust J Bot 50:713–723. doi:10.1071/BT02018

    Article  CAS  Google Scholar 

  • Hajari E, Watt MP, Mycock DG, Mcalister B (2006) Plant regeneration from induced callus of improved Eucalyptus clones. S Afr J Bot 72:195–201. doi:10.1016/j.sajb.2005.07.003

    Article  Google Scholar 

  • Hatzilazarou SP, Syros TD, Yupsanis TA, Bosabalidis AM, Economou AS (2006) Peroxidases, lignin and anatomy during in vitro and ex vitro rooting gardenia (Gardenia jasminoides Ellis) microshoots. J Plant Physiol 163:827–836. doi:10.1016/j.jplph.2005.06.018

    Article  CAS  PubMed  Google Scholar 

  • Huang ZC, Zeng FH, Lu XY (2010) Efficient regeneration of Eucalyptus urophylla from seedling-derived hypocotyls. Biol Plant 54:131–134. doi:10.1007/s10535-010-0020-4

    Article  CAS  Google Scholar 

  • Huff AK, Ross CW (1975) Promotion of radish cotyledon enlargement and reducing sugar content by zeatin and red light. Plant Physiol 56:429–33. doi:10.1104/pp. 56.3.429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hung CD, Trueman SJ (2011) Topophysic effects differ between node and organogenic cultures of the eucalypt Corymbia torelliana × C. citriodora. Plant Cell Tissue Organ Cult 104:69–77. doi:10.1007/s11240-010-9805-6

    Article  Google Scholar 

  • Kameya T, Widholm J (1981) Plant regeneration from hypocotyl sections of Glycine species. Plant Sci Lett 21:289–294. doi:10.1016/0304-4211(81)90101-2

    Article  CAS  Google Scholar 

  • Karnovski MJA (1965) A formaldhyde-glutaraldhyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137–138

    Google Scholar 

  • Kitahara EH, Caldas LS (1975) Shoot and root formation in hypocotyl callus cultures of Eucalyptus. For Sci 21:242–243

    CAS  Google Scholar 

  • Labate CA, De Assis TF, Oda S, Mello EJ, Mori ES, Moraes MLT, Cid LPB, Gonzáles ER, Alfenas AC, Zauza EA, Foelkel C, Moon DH, De Carvalho MCCG, Caldas DGG, Carneiro R (2009) Eucalyptus. In: Kole C, Hall T (eds) Compendium of transgenic crop plants. Wiley, Chichester, pp 35–108. doi:10.1002/9781405181099.k0902

    Google Scholar 

  • Lakshmi Sita G (1979) Morphogenesis and plant regeneration from cotyledonary cultures of Eucalyptus. Plant Sci Lett 14:63–68. doi:10.1016/0304-4211(79)90155-X

    Article  Google Scholar 

  • Le Roux JJ, Van Staden J (1991) Micropropagation and tissue culture of Eucalyptus—a review. Tree Physiol 9:435–477. doi:10.1093/treephys/9.4.435

    Article  PubMed  Google Scholar 

  • Lloyd G, McCown BH (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by shoot tip culture. Comb Proc Int Plant Propag Soc 30:421–427

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, San Diego, pp 364–369

    Google Scholar 

  • Merkle SA, Nairn CJ (2005) Hardwood tree biotechnology. In Vitro Cell Dev Biol Plant 41:602–619. doi:10.1079/IVP2005687

    Article  CAS  Google Scholar 

  • Mohammed GH, Vidaver WE (1990) The influence of acclimatization treatment and plantlet morphology on early greenhouse performance of tissue-cultured Douglas fir [Pseudotsuga menziesii (Mirb) Franco]. Plant Cell Tissue Organ Cult 21:111–117. doi:10.1007/BF00033429

    Article  Google Scholar 

  • Monteiro ACBA, Higashi EN, Gonçalves AN, Rodriguez APM (2000) A novel approach for the definition of the inorganic medium components for micropropagation of yellow passionfruit (Passiflora edulis Sims. F. flaviacarpa Deg.). In Vitro Cell Dev Biol Plant 36:527–531

    Article  Google Scholar 

  • Morard P, Henry M (1998) Optimization of the mineral composition of in vitro culture medium. J Plant Nutr 21:1565–1576. doi:10.1080/01904169809365504

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nakata PA (2003) Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Sci 164:901–909. doi:10.1016/S0168-9452(03)00120-1

    Article  CAS  Google Scholar 

  • Nas MN, Read PE (2004) A hypothesis for the development of a defined tissue culture medium of higher plants and micropropagation of hazelnuts. Sci Hortic Amst 101:189–200. doi:10.1016/j.scienta.2003.10.004

    Article  CAS  Google Scholar 

  • Navroski MC (2011) Multiplicação in vitro de genótipos de Eucalyptus dunnii Maiden Dissertation, Universidade Federal de Santa Maria, Santa Maria, pp 79–90

  • Nugent G, Chandler SF, Whiteman P, Stevenson TW (2001) Adventitious bud induction in Eucalyptus globulus Labill. In Vitro Cell Dev Biol Plant 37:388–391. doi:10.1007/s11627-001-0068-0

    Article  CAS  Google Scholar 

  • Okubo H, Wada K, Uemoto S (1991) In vitro morphogenetic response and distribution of endogenous plant hormones in hypocotyl segments of snapdragon (Antirrhinum majus L). Plant Cell Rep 10:501–504. doi:10.1007/BF00234582

    Article  CAS  PubMed  Google Scholar 

  • Oliveira Y, Adamuchio LG, Oliveira C, Degenhardt-Goldback J, Gerhardt I, Bespalhok JC, Dibax R, Quoirin M (2011) Indirect organogenesis from leaf explants of Eucalyptus benthamii × Eucalyptus dunnii and shoot multiplication. BMC Proc 5:145. doi:10.1186/1753-6561-5-S7-P145

    Article  Google Scholar 

  • Poothong S, Reed B (2014) Modeling the effects of mineral nutrition for improving growth and development of micropropagated red raspberries. Sci Hort 165:132–141. doi:10.1016/j.scienta.2013.10.040

    Article  CAS  Google Scholar 

  • Prychid CJ, Rudall PJ (1999) Calcium oxalate crystals in monocotyledons: a review of their structure and systematic. Ann Bot 84:725–739. doi:10.1006/anbo.1999.0975

    Article  CAS  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. Vienna, Austria. http://www.R-project.org/. Accessed: 5 May 2013

  • Robards K, Prenzler PD, Tucker G, Swatsitang P, Glover W (1999) Phenolic compounds and their role in oxidative processes in fruits. Food Chem 4:401–436. doi:10.1016/S0308-8146(99)00093-X

    Article  Google Scholar 

  • Rugini E (1984) In vitro propagation of some olive (Olea europaea sativa L.) cultivars with different root-ability, and medium development using analytical data from developing shoots and embryos. Sci Hortic Amst 24:123–134

    Article  CAS  Google Scholar 

  • Scheres B (2007) Stem cell niches: nursery rhymes across kingdoms. Nat Rev Mol Cell Biol 8:345–354. doi:10.1038/nrm2164

    Article  CAS  PubMed  Google Scholar 

  • Shaff JE, Schultz BA, Craft EJ, Clark RT, Kochian LV (2010) GEOCHEM-EZ: a chemical speciation program with greater power and flexibility. Plant Soil 330:207–214. doi:10.1007/s11104-009-0193-9

    Article  CAS  Google Scholar 

  • Smith HJ, Henson M (2007) Achievements in forest tree genetic improvement in Australia and New Zealand 3: eucalyptus dunnii Maiden. Aust For 70:17–22. doi:10.1080/00049158.2007.10676257

    Article  Google Scholar 

  • Srivastava LM (2002) Plant growth and development: hormones and environment. Academic, London, pp 167–168

    Google Scholar 

  • Štefančič M, Štampar F, Osterc G (2005) Influence of IAA and IBA on root development and quality of Prunus “GiSelA 5” leafy cuttings. HortSci 40:2052–2055

    Google Scholar 

  • Termignoni RR (1998) Patent: clonagem de plantas adultas selecionadas de Eucalyptus spp. pelo processo de regeneração in vitro por embriogênese somática Patent No. PI 9801485–4 INPI, Brasil

  • Termignoni RR, Wang P, Hu C (1996) Somatic embryo induction in Eucalyptus dunnii. Plant Cell Tissue Organ Cult 45:129–132. doi:10.1007/BF00048755

    Article  CAS  Google Scholar 

  • Thomas J, Ross CW, Chastain CJ, Koomanoff W, Hendix JE, Van Volkenburgh E (1981) Cytokinin-induced wall extensibility in excised cotyledons of radish and cucumber. Plant Physiol 68:107–110. doi:10.1104/pp. 68.1.107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tibok A, Blackhall NW, Power JB, Davey MR (1995) Optimized plant regeneration from callus derived from seedling hypocotyls of Eucalyptus urophylla. Plant Sci 1:139–145. doi:10.1016/0168-9452(95)04188-Z

    Article  Google Scholar 

  • Valledor L, Hasbún R, Meijón M, Rodríguez JL, Santamaría E, Viejo M, Berdasco M, Feito I, Fraga MF, Cañal MJ, Rodríguez R (2007) Involvement of DNA methylation in tree development and micropropagation. Plant Cell Tissue Organ Cult 91:75–86. doi:10.1007/s11240-007-9262-z

  • Valledor L, Meijon M, Hasbun R, Jesus Cañal M, Rodriguez R (2010) Variations in DNA methylation, acetylated histone H4, and methylated histone H3 during Pinus radiata needle maturation in relation to the loss of in vitro organogenic capability. J Plant Physiol 167:351–7. doi:10.1016/j.jplph.2009.09.018

    Article  CAS  PubMed  Google Scholar 

  • White MJ, Lott JNA (1983) Protein body inclusions in seeds of Eucalyptus maculata and Eucalyptus erythrocorys. Can J Bot 61:1911–1918. doi:10.1139/b83-203

    Article  CAS  Google Scholar 

  • Xavier A, Otoni RL (2009) Aplicações da micropropagação na clonagem de Eucalyptus no Brasil. Agron Costarric 33:303–307

    Google Scholar 

  • Xi-Ling W, Jin-Xing Z, Mao-De Y, Zhen-Gang L, Xiao-Yun J, Qi-You L (2011) Highly efficient plant regeneration and in vitro polyploid induction using hypocotyl explants from diploid mulberry (Morus multicaulis Poir.). In Vitro Cell Dev Biol Plant 47:434–440. doi:10.1007/s11627-010-9328-1

    Article  Google Scholar 

  • Yang MZ, Jia SR, Pua EC (1991) High frequency of plant regeneration from hypocotyl explants of Brassica carinata A. Br Plant Cell Tissue Organ Cult 24:79–82. doi:10.1007/BF00039734

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo (ESALQ/USP) and the Instituto Nacional de Tecnología Agropecuaria (INTA) for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Pedro Javier Oberschelp.

Additional information

Editor: Jude W. Grosser

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oberschelp, G.P.J., Gonçalves, A.N., Meneghetti, E.C. et al. Eucalyptus dunnii Maiden plant regeneration via shoot organogenesis on a new basal medium based on the mineral composition of young stump shoots. In Vitro Cell.Dev.Biol.-Plant 51, 626–636 (2015). https://doi.org/10.1007/s11627-015-9715-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-015-9715-8

Keywords

Navigation