Skip to main content
Log in

The Influence of Alkaline Earth Elements on Electronic Properties of α-Si3N4 via DFT Calculation

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

We used density functional theory (DFT) calculations to study the influence of alkali earth metal element (AE) doping on the crystal structure and electronic band structure of α-Si3N4. The diversity of atomic radii of alkaline earth metal elements results in structural expansion when they were doped into the α-Si3N4 lattice. Formation energies of the doped structures indicate that dopants prefer to occupy the interstitial site under the nitrogen-deficient environment, while substitute Si under the nitrogen-rich environment, which provides a guide to synthesizing α-Si3N4 with different doping types by controlling nitrogen conditions. For electronic structures, energy levels of the dopants appear in the bottom of the conduction band or the top of the valence band or the forbidden band, which reduces the bandgap of α-Si3N4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen D, Cang Y P. First-Principles Study of the High-Temperature Behaviors of the Willemite-II and Post-Phenacite Phases of Silicon Nitride[J]. J. Wuhan Univ. Technol.-Mat. Sci. Edit., 2016, 31(1): 74–79

    Article  CAS  Google Scholar 

  2. Cheng C B, Fan R H, Wang C H, et al. Moisture-Proof and Enhanced Effect of Inorganic Coating on Porous Si3N4 Ceramic[J]. J. Wuhan Univ. Technol.-Mat. Sci. Edit., 2015, 30(2): 311–314

    Article  CAS  Google Scholar 

  3. Duan Y, Zhang J, Li X, et al. High Thermal Conductivity Silicon Nitride Ceramics Prepared by Pressureless Sintering with Ternary Sintering Additives[J]. Int. J. Appl. Ceram. Technol., 2019, 16(4): 1399–1406

    Article  CAS  Google Scholar 

  4. Duan Y S, Liu N, Zhang J X, et al. Cost Effective Preparation of Si3N4 Ceramics with Improved Thermal Conductivity and Mechanical Properties[J]. J. Eur. Ceram. Soc., 2020, 40(2): 298–304

    Article  CAS  Google Scholar 

  5. Hirao K, Watari K, Hayashi H, et al. High Thermal Conductivity Silicon Nitride Ceramic[J]. MRS Bull., 2001, 26(6): 451–455

    Article  CAS  Google Scholar 

  6. Yang F, Zhao S, Yang Z, et al. Synthesis and Characterization of Outer Shell Strengthened Si3N4 Foam Ceramics[J]. Mater Res. Express, 2019, 6(10): 105 017 (1–7)

    Google Scholar 

  7. Yin S, Jiang S, Pan L, et al. Preparation, Mechanical and Thermal Properties of Si3N4 Ceramics by Gelcasting Using Low-Toxic DMAA Gelling System and Gas Pressure Sintering[J]. Ceram. Int., 2018, 44(18): 22412–22420

    Article  CAS  Google Scholar 

  8. Li Y, Kim H-N, Wu H, et al. Improved Thermal Conductivity of Sintered Reaction-Bonded Silicon Nitride Using a BN/Graphite Powder Bed[J]. J. Eur. Ceram. Soc., 2017, 37(15): 4483–4490

    Article  CAS  Google Scholar 

  9. Liu K, Zhang C R, Li B, et al. Effect of Sintering Additives on Properties of Si3N4-BN Composites Fabricated via Die Pressing and Precursor Infiltration and Pyrolysis Route[J]. J. Wuhan Univ. Technol.-Mat. Sci. Edit., 2014, 29(5): 891–894

    Article  CAS  Google Scholar 

  10. Riley F L. Silicon Nitride and Related Materials[J]. J. Am. Ceram. Soc., 2000, 83(2): 245–265

    Article  CAS  Google Scholar 

  11. Wang L, Qi Q, Cai P, et al. New Route to Improve the Fracture Toughness and Flexural Strength of Si3N4 Ceramics by Adding FeSi2[J]. Scr. Mater., 2017, 126: 11–14

    Article  CAS  Google Scholar 

  12. Boyko T D, Gross T, Schwarz M, et al. The Local Crystal Structure and Electronic Band Gap of Beta-Sialons[J]. J. Mater Sci., 2014, 49(8): 3242–3252

    Article  CAS  Google Scholar 

  13. Chen Y R, Li Z M, Zhang Z W, et al. Annealing Effect on the Bipolar Resistive Switching Characteristics of a Ti/Si3N4/N-GaN MIS Device[J]. J. Alloy. Compd., 2018, 740: 816–822

    Article  CAS  Google Scholar 

  14. Ma T P. Making Silicon Nitride Film a Viable Gate Dielectric[J]. IEEE Trans. Electron Devices, 1998, 45(3): 680–690

    Article  CAS  Google Scholar 

  15. Razavi S M, Pour S T, Najari P. New Gan Based Hemt with Si3N4 or Un-Doped Region in the Barrier for High Power Applications[J]. Superlattices Microstruct., 2018, 118: 221–229

    Article  CAS  Google Scholar 

  16. Huang J, Zhang S, Huang Z, et al. Catalyst-Assisted Synthesis and Growth Mechanism of Ultra-Long Single Crystal Alpha-Si3N4 Nanobelts with Strong Violet-Blue Luminescent Properties[J]. Crystengcomm, 2012, 14(21): 7301–7305

    Article  CAS  Google Scholar 

  17. Cao L, Guo J, Wang S, et al. Effect of Graphene Oxide on in-Situ Surface Growth of Pure Alpha-Si3N4 Microbelts and Their Blue Luminescent Performance[J]. Carbon, 2019, 154: 74–80

    Article  CAS  Google Scholar 

  18. Huang J, Zhang S, Huang Z, et al. Growth of Alpha-Si3N4 Nanobelts via Ni-Catalyzed Thermal Chemical Vapour Deposition and Their Violet-Blue Luminescent Properties[J]. Crystengcomm, 2013, 15(4): 785–790

    Article  CAS  Google Scholar 

  19. Huang Z, Chen F, Shen Q, et al. Linking Photoluminescence of Alpha-Si3N4 to Intrinsic Point Defects via Band Structure Modelling[J]. RSC Adv., 2016, 6(9): 7568–7574

    Article  CAS  Google Scholar 

  20. Zhang L G, Jin H, Yang W Y, et al. Optical Properties of Single-Crystalline Alpha-Si3N4 Nanobelts[J]. Appl. Phys. Lett., 2005, 86(6): 061 908(1–3)

    Google Scholar 

  21. Dasog M and Veinot J G C. Solid-State Synthesis of Luminescent Silicon Nitride Nanocrystals[J]. Chem. Commun., 2012, 48(31): 3760–3762

    Article  CAS  Google Scholar 

  22. Qian H, Zhu Y, Mao Z, et al. Tunable Morphology and Photoluminescence of Uniform Alpha-Si3N4 Microribbons[J]. Micro Nano Lett., 2012, 7(7): 637–640

    Article  CAS  Google Scholar 

  23. Su R, Huang Z F, Chen F, et al. Synthesis and Luminescent Properties of Ternary Si-Ge-N Nanowires[J]. Crystengcomm, 2016, 18(45): 8787–8793

    Article  CAS  Google Scholar 

  24. Puglia D, Sombrio G, dos Reis R, et al. Photoluminescence Properties of Arsenic and Boron Doped Si3N4 Nanocrystal Embedded in SiNxOy Matrix[J]. Mater. Res. Express, 2018, 5(3): 036 201 (1–7)

    Article  CAS  Google Scholar 

  25. Bosco G B F, Khatami Z, Wojcik J, et al. Excitation Mechanism of Tb3+ in Alpha-Si3N4: H under Sub-Gap Excitation[J]. J. Lumines., 2018, 202: 327–331

    Article  CAS  Google Scholar 

  26. Yang C, Ye F, Ma J, et al. Comparative Study of Fluoride and Non-Fluoride Additives in High Thermal Conductive Silicon Nitride Ceramics Fabricated by Spark Plasma Sintering and Post-Sintering Heat Treatment[J]. Ceram. Int., 2018, 44(18): 23202–23207

    Article  CAS  Google Scholar 

  27. El-hoshoudy A N, Soliman F S, Mansour E M, et al. Experimental and Theoretical Investigation of Quaternary Ammonium-Based Deep Eutectic Solvent for Secondary Water Flooding[J]. J. Mol. Liq., 2019, 294: 111 621 (1–16)

    Article  CAS  Google Scholar 

  28. Jing Y, Liu J, Zhou Z, et al. Metallic Nb2s2c Monolayer: A Promising Two-Dimensional Anode Material for Metal-Ion Batteries[J]. J. Phys. Chem. C, 2019, 123(44): 26803–26811

    Article  CAS  Google Scholar 

  29. Van der Ven A, Deng Z, Banerjee S, et al. Rechargeable Alkali-Ion Battery Materials: Theory and Computation[J]. Chem. Rev., 2020, 120(14): 6977–7019

    Article  CAS  Google Scholar 

  30. Kazemi S A and Wang Y. Super Strong 2d Titanium Carbide Mxene-Based Materials: A Theoretical Prediction[J]. J. Phys.-Condes. Matter., 2020, 32(11): 11LT01 (1–7)

    Article  Google Scholar 

  31. Sultan S, Ha M, Kim D Y, et al. Superb Water Splitting Activity of the Electrocatalyst Fe3Co(PO4)4 Designed with Computation Aid[J]. Nat. Commun., 2019, 10: 1–9

    Article  CAS  Google Scholar 

  32. Anjum T A, Naveed-Ul-Haq M, Hussain S, et al. Analyses of Structure, Electronic and Multiferroic Properties of Bi1−xNdxFeO3 (X=0, 0.05, 010, 015, 0.20, 0.25) System[J]. J. Alloy. Compd., 2020, 820: 153 095: (1–10)

    Article  CAS  Google Scholar 

  33. Adim N, Caid M, Rached D, et al. Computational Study of Structural, Electronic, Magnetic and Optical Properties of (ZnTe)m/(MnTe)n Superlattices[J]. J. Magn. Magn. Mater., 2020, 499: 166 314 (1–18)

    Article  CAS  Google Scholar 

  34. Barhoumi M, Lazaar K, Bouzidi S, et al. A DFT Study of Janus Structure of S and Se in Hfsse Layered as a Promising Candidate for Electronic Devices[J]. J. Mol. Graph., 2020, 96: 107 511 (1–21)

    Google Scholar 

  35. Xiong L, Dai J H, Song Y, et al. Effects of Doping on Photoelectrical Properties of One-Dimensional Alpha-Si3N4 Nanomaterials: A First-Principles Study[J]. Physica B, 2018, 550: 32–38

    Article  CAS  Google Scholar 

  36. Lu X, Gao X, Ren J, et al. Investigation of Electronic Structures and Optical Properties of Beta-Si3N4 Doped with IV A Elements: A First-Principles Simulation[J]. AIP Adv., 2018, 8(4): 045 023 (1–12)

    Article  CAS  Google Scholar 

  37. Huang Z, Chen F, Su R, et al. Electronic and Optical Properties of Y-Doped Si3N4 by Density Functional Theory[J]. J. Alloy. Compd., 2015, 637: 376–381

    Article  CAS  Google Scholar 

  38. Huang Z, Wang Z, Yuan H, et al. Synthesis and Photoluminescence of Doped Si3N4 Nanowires with Various Valence Electron Configurations[J]. J. Mater. Sci., 2018, 53(19): 13573–13583

    Article  CAS  Google Scholar 

  39. Wang Z, Huang Z, Chen F, et al. Synthesis and Photoluminescence of Heavily La-Doped Alpha-Si3N4 Nanowires via Nitriding Cyromilled Nanocrystalline La-Doped Silicon Powder[J]. J. Lumines., 2014, 151: 66–70

    Article  CAS  Google Scholar 

  40. Wang F, Qin X, Yang L, et al. Synthesis and Photoluminescence of Si3N4 Nanowires from La/SiO2 Composites and Si Powders[J]. Ceram. Int., 2015, 41(1): 1505–1510

    Article  CAS  Google Scholar 

  41. Huang Z, Wang Z, Chen F, et al. Band Structures and Optical Properties of Al-Doped Alpha-Si3N4: Theoretical and Experimental Studies[J]. Ceram. Int., 2016, 42(2): 3681–3686

    Article  CAS  Google Scholar 

  42. Yang W, Wang H, Liu S, et al. Controlled Al-Doped Single-Crystalline Silicon Nitride Nanowires Synthesized via Pyrolysis of Polymer Precursors[J]. J. Phys. Chem. B, 2007, 111(16): 4156–4160

    Article  CAS  Google Scholar 

  43. Mao Z, Zhu Y, Zeng Y, et al. Investigation of Al-Doped Silicon Nitride-Based Semiconductor and Its Shrinkage Mechanism[J]. Crystengcomm, 2012, 14(23): 7929–7933

    Article  CAS  Google Scholar 

  44. Gao F, Wang Y, Zhang L, et al. Optical Properties of Heavily Al-Doped Single-Crystal Si3N4 Nanobelts[J]. J. Am. Ceram. Soc., 2010, 93(5): 1364–1367

    CAS  Google Scholar 

  45. Su R, Huang Z F, Chen F, et al. Simplified Synthesis and Luminous Mechanism of Eu2-Doped Alpha-Si3N4 Nanowires with Strong Green Luminescent Properties[J]. Key Eng. Mater., 2016, 727: 635–641

    Article  Google Scholar 

  46. Xu X, Nishimura T, Huang Q, et al. Synthesis and Photoluminescence of Eu2-Doped Alpha-Silicon Nitride Nanowires Coated with Thin BN Film[J]. J. Am. Ceram. Soc., 2007, 90(12): 4047–4049

    CAS  Google Scholar 

  47. Xu C K, Kim M, Chun J, et al. Gallium-Doped Silicon Nitride Nanowires Sheathed with Amorphous Silicon Oxynitride[J]. Scr. Mater., 2005, 53(8): 949–954

    Article  CAS  Google Scholar 

  48. Kresse G and Furthmüller J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set[J]. Comp.mat.er.sci, 6(1): 0–50

  49. Aryasetiawan F and Gunnarsson O. The GW Method[J]. Rep. Prog. Phys., 1998, 61(3): 237–312

    Article  CAS  Google Scholar 

  50. Xiao W and Geng W T. Substantial Band-Gap Narrowing of Alpha-Si3N4 Induced by Heavy Al Doping[J]. Phys. Lett. A, 2011, 375(30–31): 2874–2877

    Article  CAS  Google Scholar 

  51. Ding Y C, Xiang A P, Xu M, et al. Electronic Structures and Optical Properties of Gamma-Si3N4 Doped with La[J]. Physica B, 2008, 403(13–16): 2200–2206

    Article  CAS  Google Scholar 

  52. Cheng C Q, Li G, Zhang W D, et al. Electronic Structures and Optical Properties of Boron and Phosphorus Doped Beta-Si3N4 [J]. Acta Phys. Sin., 2015, 64(6): 067 102 (1–7)

    Google Scholar 

  53. Karazhanov S Z, Kroll P, Marstein E S, et al. Doping-Induced Modulation of Electrical and Optical Properties of Silicon Nitride[J]. Thin Solid Films, 2010, 518(17): 4918–4922

    Article  CAS  Google Scholar 

  54. Lu X F, La P Q, Guo X, et al. Research of Electronic Structures and Optical Properties of Na- and Mg-Doped Beta-Si3N4 Based on the First-Principles Calculations[J]. Comput. Mater. Sci., 2013, 79: 174–181

    Article  CAS  Google Scholar 

  55. Lu X F, Gao X, Ren J Q, et al. Bandgap Control and Optical Properties of Beta-Si3N4 by Single- and Co-Doping from a First-Principles Simulation[J]. Int. J. Mod. Phys. B, 2018, 32(14): 1 850 178 (1–12)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Shen  (沈强).

Additional information

Funded by National Key Research and Development Program of China (No. 2017YFB0310400), the National Natural Science Foundation of China (Nos. 51872217, 51932006, 51972246 and 51521001), Fundamental Research Funds for the Central Universities in China, State Key Laboratory of Advanced Electromagnetic Engineering and Technology (Huazhong University of Science and Technology), the Joint Fund (No. 6141A02022255), the Major Program of the Specialized Technological Innovation of HuBei Province, China (No. 2019AFA176) and the “111” Project (No. B13035)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Huang, Z., Yin, Z. et al. The Influence of Alkaline Earth Elements on Electronic Properties of α-Si3N4 via DFT Calculation. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 35, 863–871 (2020). https://doi.org/10.1007/s11595-020-2331-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-020-2331-4

Key words

Navigation