Skip to main content
Log in

A comparative study on the structural, electronic, and magnetic properties of the cubic Sr-based perovskite SrXO3(X = Mn, Sn, Cr): DFT calculation

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

In this work, we report detailed calculations on the structural, electronic, and magnetic properties of the SrSnO3, SrMnO3, and SrCrO3 using the full-potential linearized augmented plane-wave (FP-LAPW) method implemented in the WIEN2K code. The three materials share the computing of the structural and the electronic properties; however, the magnetic properties were calculated only for both SrMnO3 and SrCrO3 where the SrSnO3 is a non-magnetic material. Furthermore, our results are in good agreement with the available experimental data showing a little error difference on the structural parameters close to 0.04, 0.03, and 0.04 for the SrMnO3, SrCrO3, and the SrSnO3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. S. Wang, X. Wang, L. Yuan, G. Ma, J. Zhang, Y. Zhang, X. Cui, X. Wu, D. Lu, Cryst. Growth Des. 20(4), 2123–2128 (2020)

    Article  Google Scholar 

  2. B. Sabir, G. Murtaza, R.A. Khalil, Q. Mahmood, J. Mol. Graph. Model. 86, 19–26 (2019)

    Article  CAS  PubMed  Google Scholar 

  3. M.M. Hossain, A. AlMahmud, Comput. Condens. Matter 32, e00695 (2022)

    Article  Google Scholar 

  4. A.A. Adewale, A. Chik, R.M. Zaki, F. Che Pa, Y.C. Keat, N.H. Jamil, Solid State Phenom. 280, 3–8 (2018)

    Article  Google Scholar 

  5. Y. Selmani, H. Labrim, M. Mouatassime, L. Bahmad, Mater. Sci. Semicond. Process. 152, 107053 (2022)

    Article  CAS  Google Scholar 

  6. S. Idrissi, O. Mounkachi, L. Bahmad, A. Benyoussef, J. Korean Ceram. Soc. 60, 424–433 (2023)

    Article  CAS  Google Scholar 

  7. S. Idrissi, O. Mounkachi, L. Bahmad, A. Benyoussef, Comput. Condens. Matter 33, e00617 (2022)

    Article  Google Scholar 

  8. H. Labrim, Y. Selmani et al., Solid State Commun. 363, 115105 (2023)

    Article  CAS  Google Scholar 

  9. L. Xu, Z. Wang, B. Su, C. Wang, X. Yang, R. Su, X. Long, C. He, Crystals 10, 434 (2020)

    Article  CAS  Google Scholar 

  10. S. Idrissi, H. Labrim et al., J. Supercond. Nov. Magn. 34, 2371–2380 (2021)

    Article  CAS  Google Scholar 

  11. K. Kobayashi, D. Kan, S. Matsumoto, M. Mizumaki, Y. Shimakawa, J. Phys. Soc. Jpn. 88, 084708 (2019)

    Article  Google Scholar 

  12. H. Fu, R.E. Cohen, Nature 403, 281–283 (2000)

    Article  CAS  PubMed  Google Scholar 

  13. U. Qazi, S. Mehmood, Z. Ali, I. Khan, I. Ahmad, Phys. B Condens. Matter 624, 413361 (2022)

    Article  CAS  Google Scholar 

  14. R.B. Behram, M.A. Iqbal, M. Rashid, M.A. Sattar, A. Mahmood, S.M. Ramay, Chin. Phys. B 26, 116103 (2017)

    Article  Google Scholar 

  15. K. Schwarz, P. Blaha, G.K.H. Madsen, Comput. Phys. Commun. 147, 71 (2002)

    Article  Google Scholar 

  16. R.M. Dreizler, E.K.U. Gross, Density functional theory (Springer, 1990)

    Book  Google Scholar 

  17. G. Robert Parr, Y. Weitao, Density-functional theory of atoms and molecules (Oxford University Press, 1994)

    Google Scholar 

  18. P. Blaha, K. Schwarz, G.K.H. Madsen et al., WIEN2k, an augmented plane wave plus local orbitals program for calculating crystal properties (Vienna University of Technology, Vienna, 2001)

    Google Scholar 

  19. A.V. Nemtsev, V.S. Zhandun, V.I. Zineko, J. Exp. Theor. Phys. 126, 497–505 (2018)

    Article  CAS  Google Scholar 

  20. E. Cortés-Adasme, R. Castillo, S. Conejeros, M. Vega, J. Llanos, J. Alloys Compd. 771, 162–168 (2018)

    Article  Google Scholar 

  21. S. Tariq, A.A. Mubarak et al., Chin. J. Phys. 63, 84–91 (2020)

    Article  CAS  Google Scholar 

  22. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406–136414 (2008)

    Article  PubMed  Google Scholar 

  23. W. Kohn, L.J. Sham, Phys. Rev. 140(4A), A1133–A1138 (1965)

    Article  Google Scholar 

  24. F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    Article  PubMed  Google Scholar 

  25. F. Tran, P. Blaha, K. Schwarz, J. Phys. Condens. Matter 19, 196208 (2007)

    Article  Google Scholar 

  26. J.L. Erskine, E.A. Stern, Phys. Rev. Lett. 30, 1329 (1973)

    Article  CAS  Google Scholar 

  27. A. Kumar, M. Kumar, R.P. Singh, P.K. Singh, Solid State Commun. 324, 114139 (2021)

    Article  CAS  Google Scholar 

  28. S. Tariq, A.A. Mubarak, B. Kanwal, F. Hamioud, Q. Afzal, S. Zahra, Chin. J. Phys.. 63, 84–91 (2020)

    Article  CAS  Google Scholar 

  29. V.V. Bannikov, I.R. Shein, V.L. Kozhevnikov, A.L. Ivanovskii, J. Magn. Magn. Mater. 320, 936 (2008)

    Article  CAS  Google Scholar 

  30. F.D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. M. Musa, H.E. Saad, Bull. Mater. Sci. 44, 171 (2021)

    Article  Google Scholar 

  32. S. Li-Wei, D. Yi-Feng, Y. Xian-Qing, Q. Li-Xia, Chin. Phys. Lett. 27, 096201 (2010)

    Article  Google Scholar 

  33. O. Parkash et al., J. Mater. Sci. Lett. 13, 1616 (1994)

    Article  CAS  Google Scholar 

  34. R. Sondena, P. Ravindran, S. Stolen, T. Grande, M. Hanfland, Phys. Rev. B 74, 144102 (2006)

    Article  Google Scholar 

  35. L.O. San-Martin, A.J. Williams, J. Rodgers, J.P. Attfield, G. Heymann, H. Huppertz, Phys. Rev. Lett. 99, 255701 (2007)

    Article  Google Scholar 

  36. A. Kumar, M. Kumar et al., Solid State Commun. 324, 114139 (2021)

    Article  CAS  Google Scholar 

  37. S. Satapathy, M. Batouche, T. Seddik, M.M. Salah, K.K. Maurya, Crystals 13, 1185 (2023)

    Article  CAS  Google Scholar 

  38. M. Musa, H.E. Saad, J. Sci Adv Mater dev 2, 115–122 (2017)

    Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Labidi or R. Masrour.

Ethics declarations

Conflict of interest

No conflict interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramdane, O., Labidi, M., Labidi, S. et al. A comparative study on the structural, electronic, and magnetic properties of the cubic Sr-based perovskite SrXO3(X = Mn, Sn, Cr): DFT calculation. J. Korean Ceram. Soc. (2024). https://doi.org/10.1007/s43207-024-00397-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43207-024-00397-7

Keywords

Navigation