Skip to main content

Advertisement

Log in

First-principles study of the high-temperature behaviors of the willemite-II and post-phenacite phases of silicon nitride

  • Advanced materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The structural and elastic properties of the recently-discovered wII- and δ-Si3N4 are investigated through the plane-wave pseudo-potential method within ultrasoft pseudopotentials. The elastic constants show that wII- and δ-Si3N4 are mechanically stable in the pressure ranges of 0-50 GPa and 40-50 GPa, respectively. The α→wII phase transition can be observed at 18.6 GPa and 300 K. The β→δ phase transformation occurs at pressures of 29.6, 32.1, 35.9, 39.6, 41.8, and 44.1 GPa when the temperatures are 100, 200, 300, 400, 500, and 600 K, respectively. The results show that the interactions among the N-2s, Si-3s, 3p bands (lower valence band) and the Si-3p, N-2p bands (upper valence band) play an important role in the stabilities of the wII and δ phases. Moreover, several thermodynamic parameters (thermal expansion, free energy, bulk modulus and heat capacity) of δ-Si3N4 are also obtained. Some interesting features are found in these properties. δ-Si3N4 is predicted to be a negative thermal expansion material. The adiabatic bulk modulus decreases with applied pressure, but a majority of materials show the opposite trend. Further experimental investigations with higher precisions may be required to determine the fundamental properties of wII- and δ-Si3N4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kruger M B, Nguyen J H, Li Y M, et al. Equation of State of a-Si3N4s[J]. Physical Review B, 1997, 55: 3 456–3 460

    Article  Google Scholar 

  2. Zerr A, Miehe G, Serghiou G, et al. Synthesis of Cubic Silicon Nitride[J]. Nature (London), 1999, 400: 340–342

    Article  Google Scholar 

  3. Mo S D, Ouyang L Z, Ching W Y, et al. Interesting Physical Properties of the New Spinel Phase of Si3N4 and C3N4[J]. Physical Review Letters, 1999, 83: 5 046–5 049

    Article  Google Scholar 

  4. Kroll P. Pathways to Metastable Nitride Structures[J]. Journal of Solid State Chemistry, 2003, 176: 530–537

    Article  Google Scholar 

  5. Zerr A. A New High-Pressure d-phase of Si3N4[J]. Physica Status Solidi B, 2001, 227: R4–R6

    Article  Google Scholar 

  6. Xu B, Dong J J, McMillan P F, et al. Equilibrium and Metastable Phase Transitions in Silicon Nitride at High Pressure: A First-Principles and Experimental Study[J]. Physical Review B, 2011, 84: 014 113

    Google Scholar 

  7. Ordonez S, Iturriza I, Castro F. The Influence of Amount and Type of Additives on a?ß Si3N4 Trans-formation[J]. Journal of Materials Science, 1999, 34: 147–153

    Article  Google Scholar 

  8. Kuwabara A, Matsunaga K, Tanaka I. Lattice Dynamics and Thermodynamical Properties of Silicon Nitride Polymorphs[J]. Physical Review B, 2008, 78: 064 104

    Article  Google Scholar 

  9. Togo A, Kroll P. First-Principles Lattice Dynamics Calculations of the Phase Boundary between beta-Si3N4 and Gamma-Si3N4 at Elevated Temperatures and Pressure[J]. Journal of Computational Chemistry, 2008, 29: 2 255–2 259

    Article  Google Scholar 

  10. von Lilienfeld O A, Tavernelli I, Rothlisberger U. Optimization of Effective Atom Centered Potentials for London Dispersion Forces in Density Functional Theory[J]. Physical Review Letters, 2004, 93: 153 004

    Article  Google Scholar 

  11. Vanderbilt D. Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism[J]. Physical Review B, 1990, 41: 7 892–7 895

    Article  Google Scholar 

  12. Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation made Simple[J]. Physical Review Letters, 1996, 77: 3 865–3 868

    Article  Google Scholar 

  13. Monkhorst H J, Pack J D. Special Points for Brillouin-Zone Integrations[J]. Physical Review B, 1976, 13: 5 188–5 192

    Article  Google Scholar 

  14. Blanco M A, Francisco E, Luana V. Gibbs: Isothermal-Isobaric Thermodynamics of Solids from Energy Curves using a Quasi-Harmonic Debye Model[J]. Comput. Phys. Commun., 2004, 158: 57–72

    Article  Google Scholar 

  15. Murnaghan F D. The Compressibility of Media under Extreme Pressures[J]. Proceedings of the National Academy of Sciences of the United States of America, 1944, 30: 244–247

    Article  Google Scholar 

  16. Sin’ko G V, Smirnov N A. Ab Initio Calculations of Elastic Constants and Thermodynamic Properties of bcc, fcc, and hcp Al Crystals under Pressure[J]. Journal of Physics: Condensed Matter., 2002, 14: 6 989–6 992

    Google Scholar 

  17. Hu Q M, Lu S, Yang R. Elastic Stability of ß-Ti under Pressure Calculated using a First-Principles Plane-Wave Pseudo-potential Method[J]. Physical Review B, 2008, 78: 052 102

    Google Scholar 

  18. Gregoryanz E, Hemley R J, Mao H K, et al. High-Pressure Elasticity of a-quartz: Instability and Ferroelastic Transition[J]. Physical Review Letters, 2000, 84: 3 117–3 120

    Article  Google Scholar 

  19. Yu B H, Chen D. Investigations of meta-Stable and Post-Spinel Silicon Nitrides[J]. Physica B, 2012, 407: 4 660–4 664

    Article  Google Scholar 

  20. Chen D, Yu B H. Pressure-Induced Phase Transition in Silicon Nitride Material[J]. Chinese Physics B, 2013, 22: 023 104

    Google Scholar 

  21. Shaposhnikov A V, Petrov I P, Gritsenko V A, et al. Electronic Band Structure and Effective Maßses of Electrons and Holes in the a and ß Phases of Silicon Nitride[J]. Physics of the Solid State, 2007, 49: 1 628–1 632

    Article  Google Scholar 

  22. Carson R D, Schnatterly S E. Valence-Band Electronic Structure of Silicon Nitride Studied with the Use of Soft-X-Ray Emission[J]. Physical Review B, 1986, 33: 2 432–2 438

    Article  Google Scholar 

  23. Oh J W, Kim C Y, Nahm K S, et al. The Hydriding Kinetics of LaNi4.5Al0.5 with Hydrogen[J]. Journal of Alloys and Compounds, 1998, 278: 270–276

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Chen  (陈东).

Additional information

Funded by National Natural Science Foundation of China (Nos. 61475132, 61501392, 11475143, 11304141), the National Training Programs of Innovation and Entrepreneurship for Undergraduates (No. 201510477001)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Cang, Y. First-principles study of the high-temperature behaviors of the willemite-II and post-phenacite phases of silicon nitride. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 31, 74–79 (2016). https://doi.org/10.1007/s11595-016-1333-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-016-1333-8

Key words

Navigation