Skip to main content
Log in

Fabrication of high-performance symmetrical supercapacitor using lithium iodide-based biopolymer electrolyte

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium iodide-incorporated solid polymer electrolyte has been developed by using the optimized blend of iota carrageenan and acacia gum with ethylene glycol as a plasticizer using the solution cast technique. Structural studies have been done by using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis. The thermal stability of the polymer blend electrolytes is analyzed by using differential scanning calorimetry (DSC). The conductivity of the blend electrolytes was measured by using an impedance analyzer. Among them, the one with 15 wt% LiI incorporated polymer electrolyte (referred to as IAI15) exhibits the higher conductivity as 1.21 × 10−3 S cm−1. It also has a low activation energy of 0.05 eV and a high ionic transport number of 0.999. The frequency dependence of the dielectric parameters and the dielectric loss tangent are used to confirm the non-Debye property of the prepared polymer electrolytes. Furthermore, the specific electrolyte (IAI15) is utilized in the fabrication of a symmetric capacitor. Remarkably, the cyclic voltammetry (CV) response shows no redox peaks across its entire potential range, indicating electric double-layer capacitor (EDLC) behavior. Through galvanostatic charge/discharge (GCD) studies on a prepared symmetrical capacitor, discharge time and specific capacitance (Cs) values are determined as 30 s and 150 F/g, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Arof AK, Shuhaimi NEA, Alias NA et al (2010) Application of chitosan/iota-carrageenan polymer electrolytes in electrical double layer capacitor (EDLC). J Solid State Electrochem 14:2145–2152. https://doi.org/10.1007/s10008-010-1050-8

    Article  CAS  Google Scholar 

  2. Arockia Mary I, Selvanayagam S, Selvasekarapandian S et al (2019) Lithium ion conducting membrane based on K-carrageenan complexed with lithium bromide and its electrochemical applications. Ionics (Kiel) 25:5839–5855. https://doi.org/10.1007/s11581-019-03150-x

    Article  CAS  Google Scholar 

  3. Varshney PK, Gupta S (2011) Natural polymer-based electrolytes for electrochemical devices: A review. Ionics (Kiel) 17:479–483. https://doi.org/10.1007/s11581-011-0563-1

    Article  CAS  Google Scholar 

  4. Selvalakshmi S, Mathavan T, Selvasekarapandian S, Premalatha M (2018) Effect of ethylene carbonate plasticizer on agar-agar: NH4Br-based solid polymer electrolytes. Ionics (Kiel) 24:2209–2217. https://doi.org/10.1007/s11581-017-2417-y

    Article  CAS  Google Scholar 

  5. Che Balian SR, Ahmad A, Mohamed NS (2016) The effect of lithium iodide to the properties of carboxymethyl κ-carrageenan/carboxymethyl cellulose polymer electrolyte and dye-sensitized solar cell performance. Polymers (Basel) 8. https://doi.org/10.3390/polym8050163

  6. Aziz SB, Dannoun EMA, Hamsan MH et al (2021) A polymer blend electrolyte based on cs with enhanced ion transport and electrochemical properties for electrical double layer capacitor applications. Polymers (Basel) 13. https://doi.org/10.3390/polym13060930

  7. Jumaah FN, Mobarak NN, Ahmad A et al (2015) Derivative of iota-carrageenan as solid polymer electrolyte. Ionics (Kiel) 21:1311–1320. https://doi.org/10.1007/s11581-014-1306-x

    Article  CAS  Google Scholar 

  8. Nandhinilakshmi M, Vanitha D, Nallamuthu N, Sundaramahalingam K, Saranya P (2023) Fabrication of symmetric super capacitor using lithium - ion conducting IOTA carrageenan - based biopolymer electrolytes. J Polym Environ. https://doi.org/10.1007/s10924-023-03014-6

  9. Zia KM, Tabasum S, Nasif M et al (2017) A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. Int J Biol Macromol 96:282–301. https://doi.org/10.1016/j.ijbiomac.2016.11.095

    Article  CAS  PubMed  Google Scholar 

  10. Masoud EM (2019) Montmorillonite incorporated polymethylmethacrylate matrix containing lithium trifluoromethanesulphonate (LTF) salt: thermally stable polymer nanocomposite electrolyte for lithium-ion batteries application. Ionics (Kiel) 25:2645–2656. https://doi.org/10.1007/s11581-018-2802-1

    Article  CAS  Google Scholar 

  11. Masoud EM, El-Bellihi AA, Bayoumy WA, Mohamed EA (2018) Polymer composite containing nano magnesium oxide filler and lithiumtriflate salt: An efficient polymer electrolyte for lithium ion batteries application. J Mol Liq 260:237–244. https://doi.org/10.1016/j.molliq.2018.03.084

    Article  CAS  Google Scholar 

  12. Masoud EM, Hassan ME, Wahdaan SE et al (2016) Gel P (VdF/HFP) / PVAc / lithium hexafluorophosphate composite electrolyte containing nano ZnO filler for lithium ion batteries application: Effect of nano filler concentration on structure, thermal stability and transport properties. Polym Test 56:277–286. https://doi.org/10.1016/j.polymertesting.2016.10.028

    Article  CAS  Google Scholar 

  13. Masoud EM (2016) Nano lithium aluminate filler incorporating gel lithium triflate polymer composite: Preparation, characterization and application as an electrolyte in lithium ion batteries. Polym Test 56:65–73. https://doi.org/10.1016/j.polymertesting.2016.09.024

    Article  CAS  Google Scholar 

  14. Masoud EM (2015) Citrated porous gel copolymer electrolyte composite for lithium ion batteries application: An investigation of ionic conduction in an optimized crystalline and porous structure. J Alloys Compd 651:157–163. https://doi.org/10.1016/j.jallcom.2015.08.079

    Article  CAS  Google Scholar 

  15. Masoud EM, El-Bellihi AA, Bayoumy WA, Mousa MA (2013) Effect of LiAlO2 nanoparticle filler concentration on the electrical properties of PEO-LiClO4 composite. Mater Res Bull 48:1148–1154. https://doi.org/10.1016/j.materresbull.2012.12.012

    Article  CAS  Google Scholar 

  16. Masoud EM, El-Bellihi AA, Bayoumy WA, Mousa MA (2013) Organic-inorganic composite polymer electrolyte based on PEO-LiClO 4 and nano-Al2O3 filler for lithium polymer batteries: Dielectric and transport properties. J Alloys Compd 575:223–228. https://doi.org/10.1016/j.jallcom.2013.04.054

    Article  CAS  Google Scholar 

  17. Singh HP, Kaur R, Sekhon SS (2003) Naturally occurring biopolymer as ion conducting material: Water uptake, swelling and conductivity studies. Indian J Eng Mater Sci 10:314–317

    CAS  Google Scholar 

  18. Nandhinilakshmi M, Vanitha D (2022) Investigation on conductivity and optical properties for blend electrolytes based on iota-carrageenan and acacia gum with ethylene glycol. J Mater Sci Mater Electron. https://doi.org/10.1007/s10854-022-08925-z

  19. Whba RAG, TianKhoon L, Su’ait MS et al (2020) Influence of binary lithium salts on 49% poly(methyl methacrylate) grafted natural rubber based solid polymer electrolytes. Arab J Chem 13:3351–3361. https://doi.org/10.1016/j.arabjc.2018.11.009

    Article  CAS  Google Scholar 

  20. Halim NFA, Majid SR, Arof AK et al (2012) Gellan Gum-LiI gel polymer electrolytes. Mol Cryst Liq Cryst 554:232–238. https://doi.org/10.1080/15421406.2012.634344

    Article  ADS  CAS  Google Scholar 

  21. Khanmirzaei MH, Ramesh S (2013) Ionic transport and FTIR properties of lithium iodide doped biodegradable rice starch based polymer electrolytes. Int J Electrochem Sci 8:9977–9991

    Article  CAS  Google Scholar 

  22. Salehan SS, Nadirah BN, Saheed MSM et al (2021) Conductivity, structural and thermal properties of corn starch-lithium iodide nanocomposite polymer electrolyte incorporated with Al2O3. J Polym Res 28:1–11. https://doi.org/10.1007/s10965-021-02586-y

    Article  CAS  Google Scholar 

  23. Nadirah BN, Ong CC, Saheed MSM et al (2020) Structural and conductivity studies of polyacrylonitrile/methylcellulose blend based electrolytes embedded with lithium iodide. Int J Hydrogen Energy 45:19590–19600. https://doi.org/10.1016/j.ijhydene.2020.05.016

    Article  CAS  Google Scholar 

  24. Winie T, Arof AK, Thomas S et al (2019) Polymer electrolytes: characterization techniques and energy applications. John Wiley & Sons

    Google Scholar 

  25. Aziz SB, Dannoun EMA, Abdulwahid RT et al (2022) The study of ion transport parameters in MC-based electrolyte membranes using EIS and their applications for EDLC devices. Membranes (Basel) 12. https://doi.org/10.3390/membranes12020139

  26. Alipoori S, Mazinani S, Hamed S, Sharif F (2020) Review of PVA-based gel polymer electrolytes in fl exible solid-state supercapacitors : Opportunities and challenges. J Energy Storage 27:101072. https://doi.org/10.1016/j.est.2019.101072

    Article  Google Scholar 

  27. Sumana VS, Sudhakar YN, Anitha V, Nagaraja GK (2020) Microcannular electrode/polymer electrolyte interface for high performance supercapacitor. Electrochim Acta 353:136558. https://doi.org/10.1016/j.electacta.2020.136558

    Article  CAS  Google Scholar 

  28. Sudhakar YN, Selvakumar M (2012) Lithium perchlorate doped plasticized chitosan and starch blend as biodegradable polymer electrolyte for supercapacitors. Electrochim Acta 78:398–405. https://doi.org/10.1016/j.electacta.2012.06.032

    Article  CAS  Google Scholar 

  29. Farhana NK, Omar FS, Shanti R et al (2019) Iota-carrageenan-based polymer electrolyte: impact on ionic conductivity with incorporation of AmNTFSI ionic liquid for supercapacitor. Ionics (Kiel) 25:3321–3329. https://doi.org/10.1007/s11581-019-02865-1

    Article  CAS  Google Scholar 

  30. Hadi JM, Aziz SB, Kadir MFZ et al (2021) Design of plasticized proton conducting Chitosan:Dextran based biopolymer blend electrolytes for EDLC application: Structural, impedance and electrochemical studies. Arab J Chem 14:103394. https://doi.org/10.1016/j.arabjc.2021.103394

    Article  CAS  Google Scholar 

  31. Dannoun EMA, Aziz SB, Brza MA et al (2020) The study of plasticized solid polymer blend electrolytes based on natural polymers and their application for energy storage EDLC devices. Polymers (Basel) 12:1–19. https://doi.org/10.3390/polym12112531

    Article  CAS  Google Scholar 

  32. Aziz SB, Nofal MM, Kadir MFZ et al (2021) Bio-based plasticized PVA based polymer blend electrolytes and electrochemical properties. Materials (Basel) 14:1994

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Teoh KH, Lim CS, Liew CW et al (2015) Electric double-layer capacitors with corn starch-based biopolymer electrolytes incorporating silica as filler. Ionics (Kiel) 21:2061–2068. https://doi.org/10.1007/s11581-014-1359-x

    Article  CAS  Google Scholar 

  34. Aziz SB, Hamsan MH, Kadir MFZ et al (2019) Development of polymer blend electrolyte membranes based on chitosan: Dextran with high ion transport properties for EDLC application. Int J Mol Sci 20. https://doi.org/10.3390/ijms20133369

  35. Vahini M, Muthuvinayagam M (2019) Synthesis and electrochemical studies on sodium ion conducting PVP based solid polymer electrolytes. J Mater Sci Mater Electron 30:5609–5619. https://doi.org/10.1007/s10854-019-00854-8

    Article  CAS  Google Scholar 

  36. Cholant CM, Rodrigues MP, Peres LL et al (2020) Study of the conductivity of solid polymeric electrolyte based on PVA/GA blend with addition of acetic acid. J Solid State Electrochem 24:1867–1875. https://doi.org/10.1007/s10008-020-04605-2

    Article  CAS  Google Scholar 

  37. Karthikeyan S, Selvasekarapandian S, Premalatha M et al (2017) Proton-conducting I-Carrageenan-based biopolymer electrolyte for fuel cell application. Ionics (Kiel) 23:2775–2780. https://doi.org/10.1007/s11581-016-1901-0

    Article  CAS  Google Scholar 

  38. Mary IA, Selvanayagam S, Selvasekarapandian S et al (2022) Lithium ion conducting biopolymer membrane based on kappa carrageenan with LiCl and its application to electrochemical devices. Mater Today Proc 58:855–861. https://doi.org/10.1016/j.matpr.2021.10.045

    Article  CAS  Google Scholar 

  39. Wojciechowski C, Sekkal M, Huvenne JP, Legrand P et al (1994) Dynamic study on the mechanism of gelation of carrageenans by ATR-FTIR spectroscopy at variable temperature. In: Proc. SPIE 2089. 9th International Conference on Fourier Transform Spectroscopy. https://doi.org/10.1117/12.166604

    Chapter  Google Scholar 

  40. Capiglia C, Yang J, Imanishi N et al (2003) DSC study on the thermal stability of solid polymer electrolyte cells. J Power Sources 119–121:826–832. https://doi.org/10.1016/S0378-7753(03)00280-5

    Article  CAS  Google Scholar 

  41. Sangeetha P, Selvakumari TM, Selvasekarapandian S et al (2020) Preparation and characterization of biopolymer K-carrageenan with MgCl2 and its application to electrochemical devices. Ionics (Kiel) 26:233–244. https://doi.org/10.1007/s11581-019-03193-0

    Article  CAS  Google Scholar 

  42. Monisha S, Selvasekarapandian S, Mathavan T et al (2016) Preparation and characterization of biopolymer electrolyte based on cellulose acetate for potential applications in energy storage devices. J Mater Sci Mater Electron 27:9314–9324. https://doi.org/10.1007/s10854-016-4971-x

    Article  CAS  Google Scholar 

  43. Nithya S, Selvasekarapandian S, Premalatha M (2017) Synthesis and characterization of proton-conducting polymer electrolyte based on polyacrylonitrile (PAN). Ionics (Kiel) 23:2767–2774. https://doi.org/10.1007/s11581-016-1841-8

    Article  CAS  Google Scholar 

  44. Noor NAM, Isa MIN (2019) Investigation on transport and thermal studies of solid polymer electrolyte based on carboxymethyl cellulose doped ammonium thiocyanate for potential application in electrochemical devices. Int J Hydrogen Energy 44:8298–8306. https://doi.org/10.1016/j.ijhydene.2019.02.062

    Article  CAS  Google Scholar 

  45. Nofal MM, Hadi JM, Aziz SB et al (2021) A study of methylcellulose based polymer electrolyte impregnated with potassium ion conducting carrier: Impedance, eec modeling, FTIR, dielectric, and device characteristics. Materials (Basel) 14. https://doi.org/10.3390/ma14174859

  46. Dannoun EMA, Aziz SB, Kadir MFZ et al (2022) The study of impedance, ion transport properties, EEC modeling, dielectric and electrochemical characteristics of plasticized proton conducting PVA based electrolytes. J Mater Res Technol 17:1976–1985. https://doi.org/10.1016/j.jmrt.2022.01.152

    Article  CAS  Google Scholar 

  47. Faris BK, Hassan AA, Aziz SB et al (2022) Impedance, electrical equivalent circuit (EEC) modeling, structural (FTIR and XRD), dielectric, and electric modulus study of MC-based ion-conducting solid polymer electrolytes. Materials (Basel) 15. https://doi.org/10.3390/ma15010170

  48. Sownthari K, Suthanthiraraj SA (2014) Structural and AC impedance studies on nanocomposite polymer electrolytes based on poly(ε-caprolactone). J Appl Polym Sci 131:3–8. https://doi.org/10.1002/app.40524

    Article  CAS  Google Scholar 

  49. Salleh NS, Aziz SB, Aspanut Z, Kadir MFZ (2016) Electrical impedance and conduction mechanism analysis of biopolymer electrolytes based on methyl cellulose doped with ammonium iodide. Ionics (Kiel) 22:2157–2167. https://doi.org/10.1007/s11581-016-1731-0

    Article  CAS  Google Scholar 

  50. Jothi MA, Vanitha D, Bahadur SA, Nallamuthu N (2021) Promising biodegradable polymer blend electrolytes based on cornstarch:PVP for electrochemical cell applications. Bull Mater Sci 44:1–12. https://doi.org/10.1007/s12034-021-02350-4

    Article  CAS  Google Scholar 

  51. Moualhi Y, Nofal MM, M’nassri R et al (2020) Double Jonscher response and contribution of multiple mechanisms in electrical conductivity processes of Fe-PrCaMnO ceramic. Ceram Int 46:1601–1608. https://doi.org/10.1016/j.ceramint.2019.09.131

    Article  CAS  Google Scholar 

  52. Petrowsky M, Frech R (2010) Salt concentration dependence of the compensated Arrhenius equation for alcohol-based electrolytes. Electrochim Acta 55:1285–1288. https://doi.org/10.1016/j.electacta.2009.06.008

    Article  CAS  Google Scholar 

  53. Saroj AL, Singh RK (2012) Thermal , dielectric and conductivity studies on PVA / Ionic liquid [ EMIM ][ EtSO 4 ] based polymer electrolytes. J Phys Chem Solids 73:162–168. https://doi.org/10.1016/j.jpcs.2011.11.012

    Article  ADS  CAS  Google Scholar 

  54. Ahmed HT, Abdullah OG (2020) Structural and ionic conductivity characterization of PEO:MC-NH4I proton-conducting polymer blend electrolytes based films. Results Phys 16:102861. https://doi.org/10.1016/j.rinp.2019.102861

    Article  Google Scholar 

  55. Nandhinilakshmi M, Vanitha D, Nallamuthu N et al (2022) Structural, electrical behavior of sodium ion-conducting corn starch–PVP-based solid polymer electrolytes. Polym Bull. https://doi.org/10.1007/s00289-022-04230-1

  56. Aziz SB, Brza MA, EMA D, Hamsan MH (2020) The study of electrical and electrochemical properties of magnesium ion conducting CS : PVA based polymer blend electrolytes : Role of lattice energy of magnesium salts on EDLC performance. Molecules 25(19):4503. https://doi.org/10.3390/molecules25194503

  57. Nandhinilakshmi M, Vanitha D (2022) Dielectric relaxation behaviour and ionic conductivity for corn starch and PVP with sodium fluoride. J Mater Sci Mater Electron 33:12648–12662. https://doi.org/10.1007/s10854-022-08214-9

    Article  CAS  Google Scholar 

  58. Arya A, Sharma AL (2018) Effect of salt concentration on dielectric properties of Li-ion conducting blend polymer electrolytes. J Mater Sci Mater Electron 29:17903–17920. https://doi.org/10.1007/s10854-018-9905-3

    Article  CAS  Google Scholar 

  59. Selvasekarapandian SÃ, Baskaran R, Hema M (2005) Complex AC impedance , transference number and vibrational spectroscopy studies of proton conducting PVAc – NH4SCN polymer electrolytes. Phys B Condens Matter 357:412–419. https://doi.org/10.1016/j.physb.2004.12.007

    Article  ADS  CAS  Google Scholar 

  60. Singh KP, Gupta PN (1998) Study of dielectric relaxation in polymer electrolytes. Eur Polym J 34:1023–1029. https://doi.org/10.1016/S0014-3057(97)00207-3

    Article  CAS  Google Scholar 

  61. Sengwa RJ, Choudhary S, Sankhla S (2008) Low frequency dielectric relaxation processes and ionic conductivity of montmorillonite clay nanoparticles colloidal suspension in poly (vinyl pyrrolidone) -ethylene glycol blends. Express Polym Lett 2:800–809. https://doi.org/10.3144/expresspolymlett.2008.93

    Article  CAS  Google Scholar 

  62. Prabu M, Selvasekarapandian S (2012) Dielectric and modulus studies of LiNiPO4. Mater Chem Phys 134:366–370. https://doi.org/10.1016/j.matchemphys.2012.03.003

    Article  CAS  Google Scholar 

  63. Hamsan MH, Shukur MF, Kadir MFZ (2017) The effect of NH4NO3 towards the conductivity enhancement and electrical behavior in methyl cellulose-starch blend based ionic conductors. Ionics (Kiel) 23:1137–1154. https://doi.org/10.1007/s11581-016-1918-4

    Article  CAS  Google Scholar 

  64. Asnawi ASFM, Aziz SB, Brevik I et al (2021) The study of plasticized sodium ion conducting polymer blend electrolyte membranes based on chitosan/dextran biopolymers: Ion transport, structural, morphological and potential stability. Polymers (Basel) 13:1–25. https://doi.org/10.3390/polym13030383

    Article  CAS  Google Scholar 

  65. Shukur MF, Ibrahim FM, Majid NA et al (2013) Electrical analysis of amorphous corn starch-based polymer electrolyte membranes doped with LiI. Phys Scr 88. https://doi.org/10.1088/0031-8949/88/02/025601

  66. Aziz SB, Hamsan MH, Karim WO et al (2019) High proton conducting polymer blend electrolytes based on Chitosan : Dextran with constant specific capacitance and energy density. Biomolecules 9:267. https://doi.org/10.3390/biom9070267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Muthuvinayagam M, Sundaramahalingam K (2021) Characterization of proton conducting poly[ethylene oxide]: Poly[vinyl pyrrolidone] based polymer blend electrolytes for electrochemical devices. High Perform Polym 33:205–216. https://doi.org/10.1177/0954008320953467

    Article  CAS  Google Scholar 

  68. Sravanthi K, Sundari GS, Erothu H (2021) Development of bio-degradable based polymer electrolytes for EDLC application. Optik (Stuttg) 241:166229. https://doi.org/10.1016/j.ijleo.2020.166229

    Article  ADS  CAS  Google Scholar 

  69. Aziz SB, Nofal MM, Abdulwahid RT et al (2021) Impedance, FTIR and transport properties of plasticized proton conducting biopolymer electrolyte based on chitosan for electrochemical device application. Results Phys 29:104770. https://doi.org/10.1016/j.rinp.2021.104770

    Article  Google Scholar 

  70. Aziz SB, Asnawi ASFM, Mohammed PA et al (2021) Impedance, circuit simulation, transport properties and energy storage behavior of plasticized lithium ion conducting chitosan based polymer electrolytes. Polym Test 101:107286. https://doi.org/10.1016/j.polymertesting.2021.107286

    Article  CAS  Google Scholar 

  71. Ye T, Zou Y, Xu W et al (2020) Poorly-crystallized poly(vinyl alcohol)/carrageenan matrix: Highly ionic conductive and flame-retardant gel polymer electrolytes for safe and flexible solid-state supercapacitors. J Power Sources 475:228688. https://doi.org/10.1016/j.jpowsour.2020.228688

    Article  CAS  Google Scholar 

  72. Huang Y, Liu J, Zhang J et al (2019) Flexible quasi-solid-state zinc ion batteries enabled by highly conductive carrageenan bio-polymer electrolyte. RSC Adv 9:16313–16319. https://doi.org/10.1039/c9ra01120j

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vijeth H, Ashokkumar SP, Yesappa L et al (2018) Flexible and high energy density solid-state asymmetric supercapacitor based on polythiophene nanocomposites and charcoal. RSC Adv 8:31414–31426. https://doi.org/10.1039/c8ra06102e

    Article  ADS  CAS  Google Scholar 

  74. Nadiah NS, Saiha F, Numan A et al (2017) ScienceDirect Influence of acrylic acid on ethylene carbonate / dimethyl carbonate based liquid electrolyte and its supercapacitor application. Int J Hydrogen Energy 42:30683–30690. https://doi.org/10.1016/j.ijhydene.2017.10.140

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the International Research Centre (IRC), Kalasalingam Academy of Research and Education, for providing facilities and equipment to carry out the research.

Funding

Ms. M. Nandhinilakshmi has received the technical and financial support from Kalasalingam Academy of Research and Education.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analyses were performed by M. N. The first draft of the manuscript was written by Dr. D. V., and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to D. Vanitha.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandhinilakshmi, M., Vanitha, D., Nallamuthu, N. et al. Fabrication of high-performance symmetrical supercapacitor using lithium iodide-based biopolymer electrolyte. Ionics 30, 1031–1049 (2024). https://doi.org/10.1007/s11581-023-05270-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05270-x

Keywords

Navigation