Skip to main content
Log in

Conductivity, structural and thermal properties of corn starch-lithium iodide nanocomposite polymer electrolyte incorporated with Al2O3

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A series of nanocomposite solid biopolymer electrolyte comprising of corn starch (CS) and lithium iodide (LiI) with various concentrations of nanosize aluminium oxide (Al2O3) has been prepared using standard solution casting technique. The effects of Al2O3 on the characteristics of the electrolytes are studied using Fourier transform infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and differential scanning calorimetry (DSC) techniques. FTIR analysis reveals the complexation between the materials. Result from impedance measurements demonstrates that electrolyte with 2 wt. % Al2O3 exhibits the highest room temperature ionic conductivity of (6.73 ± 0.78) × 10–4 S/cm. In XRD studies, the X-ray diffractogram of the highest conducting electrolyte exhibits the lowest peak intensity indicating high amorphous phase content in the sample. FESEM analysis shows that the incorporation of 2 wt. % Al2O3 nanofillers develops a well distributed porous structure on the surface of CS-based film. The glass transition temperature (Tg) and melting temperature (Tm) of each sample are determined from DSC analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Khanmirzaei MH, Ramesh S, Ramesh K (2015) Polymer electrolyte based dye-sensitized solar cell with rice starch and 1-methyl-3-propylimidazolium iodide ionic liquid. Mater Des 85:833–837. https://doi.org/10.1016/j.matdes.2015.06.113

    Article  CAS  Google Scholar 

  2. Singh R, Singh PK, Singh V, Bhattacharya B (2019) Quantitative analysis of ion transport mechanism in biopolymer electrolyte. Opt Laser Technol 113:303–309. https://doi.org/10.1016/j.optlastec.2018.12.036

    Article  CAS  Google Scholar 

  3. Pal P, Ghosh A (2018) Influence of TiO2 nano-particles on charge carrier transport and cell performance of PMMA-LiClO4 based nano-composite electrolytes. Electrochim Acta 260:157–167. https://doi.org/10.1016/j.electacta.2017.11.070

    Article  CAS  Google Scholar 

  4. Perumal P, Christopher Selvin P, Selvasekarapandian S et al (2019) Plasticizer incorporated, novel eco-friendly bio-polymer based solid bio-membrane for electrochemical clean energy applications. Polym Degrad Stab 159:43–53. https://doi.org/10.1016/j.polymdegradstab.2018.11.013

    Article  CAS  Google Scholar 

  5. Yusof YM, Illias HA, Shukur MF, Kadir MFZ (2017) Characterization of starch-chitosan blend-based electrolyte doped with ammonium iodide for application in proton batteries. Ionics (Kiel) 23:681–697. https://doi.org/10.1007/s11581-016-1856-1

    Article  CAS  Google Scholar 

  6. Aziz SB, Hamsan MH, Kadir MFZ et al (2019) Development of polymer blend electrolyte membranes based on chitosan: Dextran with high ion transport properties for EDLC application. Int J Mol Sci 20(13):3369. https://doi.org/10.3390/ijms20133369

    Article  CAS  PubMed Central  Google Scholar 

  7. Torres FG, Arroyo J, Alvarez R et al (2019) Carboxymethyl κ/ι-hybrid carrageenan doped with NH4I as a template for solid bio-electrolytes development. Mater Chem Phys 223:659–665. https://doi.org/10.1016/j.matchemphys.2018.11.051

    Article  CAS  Google Scholar 

  8. Pradeepa P, Sowmya G, Edwinraj S et al (2016) Influence of Al2O3 on the structure and electrochemical properties of PVAc/PMMA based blend composite polymer electrolytes. Mater Today Proc 3:2187–2196. https://doi.org/10.1016/j.matpr.2016.04.125

    Article  Google Scholar 

  9. Liang B, Tang S, Jiang Q et al (2015) Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano- Al2O3. Electrochim Acta 169:334–341. https://doi.org/10.1016/j.electacta.2015.04.039

    Article  CAS  Google Scholar 

  10. Fan L, Dang Z, Nan CW, Li M (2002) Thermal, electrical and mechanical properties of plasticized polymer electrolytes based on PEO/P(VDF-HFP) blends. Electrochim Acta 48:205–209. https://doi.org/10.1016/S0013-4686(02)00603-5

    Article  CAS  Google Scholar 

  11. Sai Prasanna CM, Austin Suthanthiraraj S (2019) Investigations of Zinc Ion Dissociation in Gel Polymer Electrolytes Based on Poly(vinyl chloride) and Poly(ethyl methacrylate) Blend on the Addition of Two Different Ceramic Nanofillers. J Inorg Organomet Polym Mater 29:483–501. https://doi.org/10.1007/s10904-018-1021-6

    Article  CAS  Google Scholar 

  12. Jinisha B, Anilkumar KM, Manoj M et al (2018) Poly (ethylene oxide) (PEO)-based, sodium ion-conducting, solid polymer electrolyte films, dispersed with Al2O3 filler, for applications in sodium ion cells. Ionics (Kiel) 24:1675–1683. https://doi.org/10.1007/s11581-017-2332-2

    Article  CAS  Google Scholar 

  13. Sengwa RJ, Choudhary S (2017) Dielectric and electrical properties of PEO– Al2O3 nanocomposites. J Alloys Compd 701:652–659. https://doi.org/10.1016/j.jallcom.2017.01.155

    Article  CAS  Google Scholar 

  14. Bandara TMWJ, Karunathilaka DGN, Ratnasekera JL et al (2017) Electrical and complex dielectric behaviour of composite polymer electrolyte based on PEO, alumina and tetrapropylammonium iodide. Ionics (Kiel) 23:1711–1719. https://doi.org/10.1007/s11581-017-2016-y

    Article  CAS  Google Scholar 

  15. Kumar MS, Rao MC (2019) Effect of Al2O3 on structural and dielectric properties of PVP-CH3COONa based solid polymer electrolyte films for energy storage devices. Heliyon 5:e02727. https://doi.org/10.1016/j.heliyon.2019.e02727

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liao Y, Sun C, Hu S, Li W (2013) Anti-thermal shrinkage nanoparticles/polymer and ionic liquid based gel polymer electrolyte for lithium ion battery. Electrochim Acta 89:461–468. https://doi.org/10.1016/j.electacta.2012.11.095

    Article  CAS  Google Scholar 

  17. Shukur MF, Ibrahim FM, Majid NA et al (2013) Electrical analysis of amorphous corn starch-based polymer electrolyte membranes doped with LiI. Phys Scr 88:025601. https://doi.org/10.1088/0031-8949/88/02/025601

    Article  CAS  Google Scholar 

  18. Khanmirzaei MH, Ramesh S (2013) Ionic transport and FTIR properties of lithium iodide doped biodegradable rice starch based polymer electrolytes. Int J Electrochem Sci 8(7):9977–9991

    CAS  Google Scholar 

  19. Manap SM, Ahmad A, Sarjadi MS, Anuar FH (2019) Effect of plasticizers and lithium perchlorate on poly(L-lactic acid)-poly(propylene glycol) solid polymer electrolyte. Malaysian J Anal Sci 23:703–714. https://doi.org/10.17576/mjas-2019-2304-17

  20. Sun CC, You AH, Teo LL, Thong LW (2018) Effect of Al2O3 in poly(methyl methacrylate) composite polymer electrolytes. AIP Conf Proc 1958. https://doi.org/10.1063/1.5034559

  21. Wieczorek W, Stevens JR, Florjańczyk Z (1996) Composite polyether based solid electrolytes. The Lewis acid-base approach. Solid State Ionics 85:67–72. https://doi.org/10.1016/0167-2738(96)00042-2

    Article  CAS  Google Scholar 

  22. Vignarooban K, Dissanayake MAKL, Albinsson I, Mellander BE (2014) Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly(ethylene oxide) (PEO) based solid polymer electrolytes. Solid State Ionics 266:25–28. https://doi.org/10.1016/j.ssi.2014.08.002

    Article  CAS  Google Scholar 

  23. Karuppasamy K, Thanikaikarasan S, Antony R et al (2012) Effect of nanochitosan on electrochemical, interfacial and thermal properties of composite solid polymer electrolytes. Ionics (Kiel) 18:737–745. https://doi.org/10.1007/s11581-012-0678-z

    Article  CAS  Google Scholar 

  24. Polu AR, Rhee HW (2016) Effect of TiO2 nanoparticles on structural, thermal, mechanical and ionic conductivity studies of PEO12-LiTDI solid polymer electrolyte. J Ind Eng Chem 37:347–353. https://doi.org/10.1016/j.jiec.2016.03.042

    Article  CAS  Google Scholar 

  25. Wimalaweera KK, Seneviratne VA, Dissanayake MAKL (2017) Effect Of Al2O3 Ceramic Filler On Thermal And Transport Properties Of Poly(Ethylene Oxide)-Lithium Perchlorate Solid Polymer Electrolyte. Procedia Eng 215:109–114. https://doi.org/10.1016/j.proeng.2018.02.082

    Article  CAS  Google Scholar 

  26. Teoh KH, Lim CS, Ramesh S (2014) Lithium ion conduction in corn starch based solid polymer electrolytes. Measurement 48:87–95. https://doi.org/10.1016/j.measurement.2013.10.040

    Article  Google Scholar 

  27. Mustafa MF, Seth NH (2020) Dielectric and modulus formalism studies on methyl cellulose based polymer electrloytes. Int J Eng Adv Res 1:10–16. In: http://myjms.mohe.gov.my/index.php/ijear/article/view/11437. Accessed 07 May 2021

  28. Vlakhov TE, Marinov YG, Hadjichristov GB, Scaramuzza N (2021) Complex electrical impedance and dielectric spectroscopy of Na+-conducting PEO/PVP/NaIO4 solid polymer electrolyte with incorporated nano-sized Graphene Oxide. J Phys Conf Ser 1762:012010. https://doi.org/10.1088/1742-6596/1762/1/012010

    Article  CAS  Google Scholar 

  29. Masoud EM, El-Bellihi AA, Bayoumy WA, Mousa MA (2013) Organic-inorganic composite polymer electrolyte based on PEO-LiClO4 and nano-Al2O3 filler for lithium polymer batteries: Dielectric and transport properties. J Alloys Compd 575:223–228. https://doi.org/10.1016/j.jallcom.2013.04.054

    Article  CAS  Google Scholar 

  30. Jadhao SR, Joat RV (2019) The effect of nanofiller on electrical conductivity of PVA based solid polymer electrolyte. Materials Today: Proceedings 15:581–585. https://doi.org/10.1016/j.matpr.2019.04.124

    Article  CAS  Google Scholar 

  31. Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semicrystalline poly(vinyl alcohol) films. Polymer (Guildf) 37:1371–1376. https://doi.org/10.1016/0032-3861(96)81134-7

    Article  CAS  Google Scholar 

  32. Lim CS, Ramesh S, Majid SR (2013) The effect of antimony trioxide on poly (vinyl alcohol)-lithium perchlorate based polymer electrolytes. Ceram Int 39:745–752. https://doi.org/10.1016/j.ceramint.2012.06.087

    Article  CAS  Google Scholar 

  33. Dyartanti ER, Susanto H, Widiasa IN, Purwanto A (2017) Response surface method (RSM) for optimization of ionic conductivity of membranes polymer electrolyte poly (vinylidene fluoride) (PVDF) with polyvinyl pyrrolidone (PVP) as pore forming agent. IOP Conf Ser Mater Sci Eng 206(1):012052. https://doi.org/10.1088/1757-899X/206/1/012052

    Article  Google Scholar 

  34. Lim CS, Teoh KH, Liew CW, Ramesh S (2014) Capacitive behavior studies on electrical double layer capacitor using poly (vinyl alcohol)-lithium perchlorate based polymer electrolyte incorporated with TiO2. Mater Chem Phys 143:661–667. https://doi.org/10.1016/j.matchemphys.2013.09.051

    Article  CAS  Google Scholar 

  35. Liew CW, Ramesh S, Arof AK (2014) Good prospect of ionic liquid based-poly(vinyl alcohol) polymer electrolytes for supercapacitors with excellent electrical, electrochemical and thermal properties. Int J Hydrogen Energy 39:2953–2963. https://doi.org/10.1016/j.ijhydene.2013.06.061

    Article  CAS  Google Scholar 

  36. Noor IS, Majid SR, Arof AK (2013) Poly(vinyl alcohol)-LiBOB complexes for lithium-air cells. Electrochim Acta 102:149–160. https://doi.org/10.1016/j.electacta.2013.04.010

    Article  CAS  Google Scholar 

  37. Ramesh S, Shanti R, Morris E (2012) Studies on the thermal behavior of CS:LiTFSI:[Amim] Cl polymer electrolytes exerted by different [Amim] Cl content. Solid State Sci 14:182–186. https://doi.org/10.1016/j.solidstatesciences.2011.11.022

    Article  CAS  Google Scholar 

  38. Dey A, Karan S, De SK (2009) Effect of nanofillers on thermal and transport properties of potassium iodide-polyethylene oxide solid polymer electrolyte. Solid State Commun 149:1282–1287. https://doi.org/10.1016/j.ssc.2009.05.021

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Murata Science Foundation grant (015ME0-190) and YUTP grant (015LC0-048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Shukur.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehan, S.S., Nadirah, B.N., Saheed, M.S.M. et al. Conductivity, structural and thermal properties of corn starch-lithium iodide nanocomposite polymer electrolyte incorporated with Al2O3. J Polym Res 28, 222 (2021). https://doi.org/10.1007/s10965-021-02586-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02586-y

Keywords

Navigation