Skip to main content

Advertisement

Log in

All-solid lithium-sulfur batteries: present situation and future progress

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium-sulfur (Li–S) batteries are among the most promising next-generation energy storage technologies due to their ability to provide up to three times greater energy density than conventional lithium-ion batteries. The implementation of Li–S battery is still facing a series of major challenges including (i) low electronic conductivity of both reactants (sulfur) and products (polysulfides) that limits the rate capability of the battery; (ii) high solubility of the polysulfide products into the electrolyte that affects the cycle life; and (iii) the reactivity of the lithium metal anode that induces serious safety hazards. Replacing hazardous organic electrolytes with solid-state electrolytes (SSEs) can prevent lithium polysulfides crossover and Li dendrite growth. SSEs with high ionic conductivity and good electrochemical stability can boost Li–S technology by improving electrochemical performance and cycling stability. All-solid lithium-sulfur batteries (SLSBs), comprising of sulfur cathode, solid electrolyte, and Li metal anode, are much safer than liquid-based electrochemical batteries such as conventional lithium batteries. They possess longer cycle life and require less effort in terms of packaging and monitoring circuits. SLSBs have the powerful ability to transfer the converted stored chemical energy into electrical energy with high efficiency and without the release of harmful gasses. This review focuses on the types of SSEs, their advantages and drawbacks in conjunction with Li–S batteries, and the challenges that hinder the practical application of SLSBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature. https://doi.org/10.1038/35104644

    Article  PubMed  Google Scholar 

  2. Rosenman A, Markevich E, Salitra G, Aurbach D, Garsuch A, Chesneau FF (2015) Review on Li-sulfur battery systems: an integral perspective. Adv Energy Mater. https://doi.org/10.1002/aenm.201500212

    Article  Google Scholar 

  3. Van Noorden R (2014) The rechargeable revolution: a better battery. Nature. https://doi.org/10.1038/507026a

    Article  PubMed  Google Scholar 

  4. Ould Amrouche S, Rekioua D, Rekioua T, Bacha S (2016) Overview of energy storage in renewable energy systems. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2016.06.243

    Article  Google Scholar 

  5. IRENA, Battery storage for renewables: market status and technology outlook, Irena. (2015).

  6. Olabi AG (2017) Renewable energy and energy storage systems. Energy. https://doi.org/10.1016/j.energy.2017.07.054

    Article  Google Scholar 

  7. Nykvist B, Nilsson M (2015) Rapidly falling costs of battery packs for electric vehicles. Nat Clim Chang. https://doi.org/10.1038/nclimate2564

    Article  Google Scholar 

  8. Ji X, Evers S, Black R, Nazar LF (2011) Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. Nat Commun. https://doi.org/10.1038/ncomms1293

    Article  PubMed  Google Scholar 

  9. Manthiram A, Fu Y, Chung SH, Zu C, Su YS (2014) Rechargeable lithium-sulfur batteries. Chem Rev. https://doi.org/10.1021/cr500062v

    Article  PubMed  Google Scholar 

  10. Dirican M, Yan C, Zhu P, Zhang X (2019) Composite solid electrolytes for all-solid-state lithium batteries. Mater Sci Eng R Rep. https://doi.org/10.1016/j.mser.2018.10.004

    Article  Google Scholar 

  11. Zhao Q, Zheng J, Archer L (2018) Interphases in lithium-sulfur batteries: toward deployable devices with competitive energy density and stability. ACS Energy Lett. https://doi.org/10.1021/acsenergylett.8b01001

    Article  Google Scholar 

  12. Seh ZW, Sun Y, Zhang Q, Cui Y (2016) Designing high-energy lithium-sulfur batteries. Chem Soc Rev. https://doi.org/10.1039/c5cs00410a

    Article  PubMed  Google Scholar 

  13. Manthiram A, Chung SH, Zu C (2015) Lithium-sulfur batteries: progress and prospects. Adv Mater. https://doi.org/10.1002/adma.201405115

    Article  PubMed  Google Scholar 

  14. Chung SH, Singhal R, Kalra V, Manthiram A (2015) Porous carbon mat as an electrochemical testing platform for investigating the polysulfide retention of various cathode configurations in Li-S cells. J Phys Chem Lett. https://doi.org/10.1021/acs.jpclett.5b00927

    Article  PubMed  Google Scholar 

  15. Xu R, Lu J, Amine K (2015) Progress in mechanistic understanding and characterization techniques of Li-S batteries. Adv Energy Mater. https://doi.org/10.1002/aenm.201500408

    Article  Google Scholar 

  16. Barchasz C, Molton F, Duboc C, Leprêtre J-C, Patoux S, Alloin F (2012) Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification. Anal Chem 84:3973–3980. https://doi.org/10.1021/ac2032244

    Article  CAS  PubMed  Google Scholar 

  17. Zhang X, Xie H, Kim CS, Zaghib K, Mauger A, Julien CM (2017) Advances in lithium—sulfur batteries. Mater Sci Eng R Rep. https://doi.org/10.1016/j.mser.2017.09.001

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cheng Q, Xu W, Qin S, Das S, Jin T, Li A, Li AC, Qie B, Yao P, Zhai H, Shi C, Yong X, Yang Y (2019) Full dissolution of the whole lithium sulfide family (Li2S8 to Li2S) in a safe eutectic solvent for rechargeable lithium–sulfur batteries. Angew Chem Int Ed 58:5557–5561. https://doi.org/10.1002/anie.201812611

    Article  CAS  Google Scholar 

  19. Wood DL, Li J, Daniel C (2015) Prospects for reducing the processing cost of lithium ion batteries. J Power Sources. https://doi.org/10.1016/j.jpowsour.2014.11.019

    Article  Google Scholar 

  20. Li Q, Chen J, Fan L, Kong X, Lu Y (2016) Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy Environ. https://doi.org/10.1016/j.gee.2016.04.006

    Article  Google Scholar 

  21. Di Lecce D, Carbone L, Gancitano V, Hassoun J (2016) Rechargeable lithium battery using non-flammable electrolyte based on tetraethylene glycol dimethyl ether and olivine cathodes. J Power Sources. https://doi.org/10.1016/j.jpowsour.2016.09.164

    Article  Google Scholar 

  22. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev. https://doi.org/10.1021/cr030203g

    Article  PubMed  Google Scholar 

  23. Nishikawa K, Mori T, Nishida T, Fukunaka Y, Rosso M, Homma T (2010) In situ observation of dendrite growth of electrodeposited Li metal. J Electrochem Soc. https://doi.org/10.1149/1.3486468

    Article  Google Scholar 

  24. Tarascon JM, Armand M (2010) Issues and challenges facing rechargeable lithium batteries. Mater Sustain Energy. https://doi.org/10.1142/9789814317665_0024

    Article  Google Scholar 

  25. Takeda Y, Yamamoto O, Imanishi N (2016) Lithium dendrite formation on a lithium metal anode from liquid, polymer and solid electrolytes. Electrochemistry. https://doi.org/10.5796/electrochemistry.84.210

    Article  Google Scholar 

  26. Mauger A, Armand M, Julien CM, Zaghib K (2017) Challenges and issues facing lithium metal for solid-state rechargeable batteries. J Power Sources. https://doi.org/10.1016/j.jpowsour.2017.04.018

    Article  Google Scholar 

  27. Cheng XB, Peng HJ, Huang JQ, Zhang R, Zhao CZ, Zhang Q (2015) Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium-sulfur batteries. ACS Nano. https://doi.org/10.1021/acsnano.5b01990

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fu K, Gong Y, Hitz GT, McOwen DW, Li Y, Xu S, Wen Y, Zhang L, Wang C, Pastel G, Dai J, Liu B, Xie H, Yao Y, Wachsman ED, Hu L (2017) Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries. Energy Environ Sci. https://doi.org/10.1039/c7ee01004d

    Article  Google Scholar 

  29. Zhu XB, Zhao TS, Wei ZH, Tan P, An L (2015) A high-rate and long cycle life solid-state lithium–air battery. Energy Environ Sci 8:3745–3754. https://doi.org/10.1039/C5EE02867A

    Article  CAS  Google Scholar 

  30. Liu Y, Li B, Kitaura H, Zhang X, Han M, He P, Zhou H (2015) Fabrication and performance of all-solid-state Li–air battery with SWCNTs/LAGP cathode. ACS Appl Mater Interfaces 7:17307–17310. https://doi.org/10.1021/acsami.5b04409

    Article  CAS  PubMed  Google Scholar 

  31. Liang J, Luo J, Sun Q, Yang X, Li R, Sun X (2019) Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries. Energy Storage Mater. https://doi.org/10.1016/j.ensm.2019.06.021

    Article  Google Scholar 

  32. Hu Y, Chen W, Lei T, Jiao Y, Huang J, Hu A, Gong C, Yan C, Wang X, Xiong J (2020) Strategies toward high-loading lithium–sulfur battery. Adv Energy Mater. https://doi.org/10.1002/aenm.202000082

    Article  Google Scholar 

  33. N.J. Dudney, W.C. West, J. Nanda, Handbook of solid state batteries, World Scientific, 2015.

  34. Zhang H, Li C, Piszcz M, Coya E, Rojo T, Rodriguez-Martinez LM, Armand M, Zhou Z (2017) Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem Soc Rev 46:797–815. https://doi.org/10.1039/C6CS00491A

    Article  CAS  PubMed  Google Scholar 

  35. H. Wang, X. Cao, W. Liu, X. Sun, Research progress of the solid state lithium-sulfur batteries, Frontiers in Energy Research. 7 (2019) 112. https://www.frontiersin.org/article/https://doi.org/10.3389/fenrg.2019.00112.

  36. Zhu Y, He X, Mo Y (2015) Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.5b07517

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhu Y, Connell JG, Tepavcevic S, Zapol P, Garcia-Mendez R, Taylor NJ, Sakamoto J, Ingram BJ, Curtiss LA, Freeland JW, Fong DD, Markovic NM (2019) Dopant-dependent stability of garnet solid electrolyte interfaces with lithium metal. Adv Energy Mater. https://doi.org/10.1002/aenm.201803440

    Article  Google Scholar 

  38. Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angewandte Chemie - International Edition. https://doi.org/10.1002/anie.200701144

    Article  PubMed  Google Scholar 

  39. Krauskopf T, Hartmann H, Zeier WG, Janek J (2019) Toward a fundamental understanding of the lithium metal anode in solid-state batteries - an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.9b02537

    Article  PubMed  Google Scholar 

  40. Janek J, Zeier WG (2016) A solid future for battery development. Nat Energy. https://doi.org/10.1038/nenergy.2016.141

    Article  Google Scholar 

  41. Ding B, Wang J, Fan Z, Chen S, Lin Q, Lu X, Dou H, Kumar Nanjundan A, Yushin G, Zhang X, Yamauchi Y (2020) Solid-state lithium–sulfur batteries: advances, challenges and perspectives. Mater Today 40:114–131. https://doi.org/10.1016/j.mattod.2020.05.020

    Article  CAS  Google Scholar 

  42. Vargas-Barbosa NM, Roling B (2020) Dynamic ion correlations in solid and liquid electrolytes: how do they affect charge and mass transport? ChemElectroChem. https://doi.org/10.1002/celc.201901627

    Article  Google Scholar 

  43. Fedorov MV, Kornyshev AA (2014) Ionic liquids at electrified interfaces. Chem Rev. https://doi.org/10.1021/cr400374x

    Article  PubMed  Google Scholar 

  44. Hayes R, Warr GG, Atkin R (2015) Structure and nanostructure in ionic liquids. Chem Rev. https://doi.org/10.1021/cr500411q

    Article  PubMed  Google Scholar 

  45. Mandai T, Yoshida K, Ueno K, Dokko K, Watanabe M (2014) Criteria for solvate ionic liquids. Phys Chem Chem Phys. https://doi.org/10.1039/c4cp00461b

    Article  PubMed  Google Scholar 

  46. Watanabe M, Dokko K, Ueno K, Thomas ML (2018) From ionic liquids to solvate ionic liquids: challenges and opportunities for next generation battery electrolytes. Bull Chem Soc Jpn. https://doi.org/10.1246/bcsj.20180216

    Article  Google Scholar 

  47. C. Austen Angell, Y. Ansari, Z. Zhao, Ionic liquids: past, present and future, Faraday Discussions. (2012). https://doi.org/10.1039/c1fd00112d.

  48. Azov VA, Egorova KS, Seitkalieva MM, Kashin AS, Ananikov VP (2018) “Solvent-in-salt” systems for design of new materials in chemistry, biology and energy research. Chem Soc Rev. https://doi.org/10.1039/c7cs00547d

    Article  PubMed  Google Scholar 

  49. Bachman JC, Muy S, Grimaud A, Chang H-H, Pour N, Lux SF, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y (2016) Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem Rev 116:140–162. https://doi.org/10.1021/acs.chemrev.5b00563

    Article  CAS  PubMed  Google Scholar 

  50. Bates JB, Dudney NJ, Gruzalski GR, Zuhr RA, Choudhury A, Luck CF, Robertson JD (1992) Electrical properties of amorphous lithium electrolyte thin films. Solid State Ionics 53–56:647–654. https://doi.org/10.1016/0167-2738(92)90442-R

    Article  Google Scholar 

  51. Lin Z, Liu Z, Dudney NJ, Liang C (2013) Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries. ACS Nano. https://doi.org/10.1021/nn400391h

    Article  PubMed  PubMed Central  Google Scholar 

  52. Unemoto A, Chen C, Wang Z, Matsuo M, Ikeshoji T, Orimo SI (2015) Pseudo-binary electrolyte, LiBH4-LiCl, for bulk-type all-solid-state lithium-sulfur battery. Nanotechnology. https://doi.org/10.1088/0957-4484/26/25/254001

    Article  PubMed  Google Scholar 

  53. Yamada T, Ito S, Omoda R, Watanabe T, Aihara Y, Agostini M, Ulissi U, Hassoun J, Scrosati B (2015) All solid-state lithium–sulfur battery using a glass-type P2S5–Li2S electrolyte: benefits on anode kinetics. J Electrochem Soc. https://doi.org/10.1149/2.0441504jes

    Article  Google Scholar 

  54. Chen M, Adams S (2015) High performance all-solid-state lithium/sulfur batteries using lithium argyrodite electrolyte. J Solid State Electrochem 19:697–702

    Article  CAS  Google Scholar 

  55. Yao X, Huang N, Han F, Zhang Q, Wan H, Mwizerwa JP, Wang C, Xu X (2017) High-performance all-solid-state lithium–sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Adv Energy Mater. https://doi.org/10.1002/aenm.201602923

    Article  Google Scholar 

  56. Nagao M, Suzuki K, Imade Y, Tateishi M, Watanabe R, Yokoi T, Hirayama M, Tatsumi T, Kanno R (2016) All-solid-state lithium–sulfur batteries with three-dimensional mesoporous electrode structures. J Power Sources. https://doi.org/10.1016/j.jpowsour.2016.09.009

    Article  Google Scholar 

  57. Tao Y, Chen S, Liu D, Peng G, Yao X, Xu X (2015) Lithium superionic conducting oxysulfide solid electrolyte with excellent stability against lithium metal for all-solid-state cells. J Electrochem Soc 163:A96

    Article  Google Scholar 

  58. Yao X, Huang N, Han F, Zhang Q, Wan H, Mwizerwa JP, Wang C, Xu X (2017) High-performance all-solid-state lithium–sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Adv Energy Mater 7:1602923. https://doi.org/10.1002/aenm.201602923

    Article  CAS  Google Scholar 

  59. Wang HC, Cao X, Liu W, Sun X (2019) Research progress of the solid state lithium-sulfur batteries. Front Energy Res. https://doi.org/10.3389/fenrg.2019.00112

    Article  Google Scholar 

  60. Bates JB, Dudney NJ, Gruzalski GR, Zuhr RA, Choudhury A, Luck CF, Robertson JD (1993) Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J Power Sources. https://doi.org/10.1016/0378-7753(93)80106-Y

    Article  Google Scholar 

  61. Tufail MK, Zhou L, Ahmad N, Chen R, Faheem M, Yang L, Yang W (2021) A novel air-stable Li7Sb0.05P2.95S10.5I0.5 superionic conductor glass-ceramics electrolyte for all-solid-state lithium-sulfur batteries. Chem Eng J 407:127149. https://doi.org/10.1016/j.cej.2020.127149

    Article  CAS  Google Scholar 

  62. Ahmad N, Zhou L, Faheem M, Tufail MK, Yang L, Chen R, Zhou Y, Yang W (2020) Enhanced air stability and high Li-ion conductivity of Li6.988P2.994Nb0.2S10.934O0.6 glass–ceramic electrolyte for all-solid-state lithium–sulfur batteries. ACS Appl Mater Interfaces 12:21548–21558. https://doi.org/10.1021/acsami.0c00393

    Article  CAS  PubMed  Google Scholar 

  63. G.S. MacGlashan, Y.G. Andreev, Structure of the polymer electrolyte poly (ethylene oxide) 6: LiAsF6, Nature. (1999).

  64. Srivastava S, Schaefer JL, Yang Z, Tu Z, Archer LA (2014) 25th anniversary article: polymer-particle composites: phase stability and applications in electrochemical energy storage. Adv Mater. https://doi.org/10.1002/adma.201303070

    Article  PubMed  Google Scholar 

  65. Jiang M, Liu G, Zhang Q, Zhou D, Yao X (2021) Ultrasmall Li2S-carbon nanotube nanocomposites for high-rate all-solid-state lithium–sulfur batteries. ACS Appl Mater Interfaces 13:18666–18672. https://doi.org/10.1021/acsami.1c00511

    Article  CAS  PubMed  Google Scholar 

  66. Yue J, Huang Y, Liu S, Chen J, Han F, Wang C (2020) Rational designed mixed-conductive sulfur cathodes for all-solid-state lithium batteries. ACS Appl Mater Interfaces 12:36066–36071. https://doi.org/10.1021/acsami.0c08564

    Article  CAS  PubMed  Google Scholar 

  67. Wang Q, Chen Y, Jin J, Wen Z (2020) A new high-capacity cathode for all-solid-state lithium sulfur battery. Solid State Ionics 357:115500. https://doi.org/10.1016/j.ssi.2020.115500

    Article  CAS  Google Scholar 

  68. Zhu R, Liu F, Li W, Fu Z (2020) In-situ generated ultra-high dispersion sulfur 3D-graphene foam for all-solid-state lithium sulfur batteries with high cell-level energy density. ChemistrySelect 5:9701–9708. https://doi.org/10.1002/slct.202002150

    Article  CAS  Google Scholar 

  69. Alzahrani AS, Otaki M, Wang D, Gao Y, Arthur TS, Liu S, Wang D (2021) Confining sulfur in porous carbon by vapor deposition to achieve high-performance cathode for all-solid-state lithium–sulfur batteries. ACS Energy Lett 6:413–418. https://doi.org/10.1021/acsenergylett.0c01956

    Article  CAS  Google Scholar 

  70. Han F, Zhu Y, He X, Mo Y, Wang C (2016) Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv Energy Mater 6:1501590. https://doi.org/10.1002/aenm.201501590

    Article  CAS  Google Scholar 

  71. Zhang W, Leichtweiß T, Culver SP, Koerver R, Das D, Weber DA, Zeier WG, Janek J (2017) The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries. ACS Appl Mater Interfaces 9:35888–35896. https://doi.org/10.1021/acsami.7b11530

    Article  CAS  PubMed  Google Scholar 

  72. Z. Cheng, Z. Xiao, H. Pan, S. Wang, R. Wang, Lithium sulfur batteries: elastic sandwich-type rGO–VS2/S composites with high tap density: structural and chemical cooperativity enabling lithium–sulfur batteries with high energy density (Adv. Energy Mater. 10/2018), Advanced Energy Materials. 8 (2018) 1870046. https://doi.org/10.1002/aenm.201870046.

  73. Liu X, Huang J-Q, Zhang Q, Mai L (2017) Nanostructured metal oxides and sulfides for lithium–sulfur batteries. Adv Mater 29:1601759. https://doi.org/10.1002/adma.201601759

    Article  CAS  Google Scholar 

  74. Xu S, Kwok CY, Zhou L, Zhang Z, Kochetkov I, Nazar LF (2021) A high capacity all solid-state Li-sulfur battery enabled by conversion-intercalation hybrid cathode architecture. Adv Func Mater 31:2004239. https://doi.org/10.1002/adfm.202004239

    Article  CAS  Google Scholar 

  75. Y. Aihara, S. Ito, R. Omoda, T. Yamada, S. Fujiki, T. Watanabe, Y. Park, S. Doo, The electrochemical characteristics and applicability of an amorphous sulfide-based solid ion conductor for the next-generation solid-state lithium secondary batteries, Frontiers in Energy Research. 4 (2016) 18. https://www.frontiersin.org/article/https://doi.org/10.3389/fenrg.2016.00018.

  76. Ulissi U, Ito S, Hosseini SM, Varzi A, Aihara Y, Passerini S (2018) High capacity all-solid-state lithium batteries enabled by pyrite-sulfur composites. Adv Energy Mater 8:1801462. https://doi.org/10.1002/aenm.201801462

    Article  CAS  Google Scholar 

  77. Bonnick P, Niitani K, Nose M, Suto K, Arthur TS, Muldoon J (2019) A high performance all solid state lithium sulfur battery with lithium thiophosphate solid electrolyte. J Mater Chem A 7:24173–24179. https://doi.org/10.1039/C9TA06971B

    Article  CAS  Google Scholar 

  78. Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) A lithium superionic conductor. Nat Mater. https://doi.org/10.1038/nmat3066

    Article  PubMed  Google Scholar 

  79. Awaka J, Takashima A, Kataoka K, Kijima N, Idemoto Y, Akimoto J (2011) Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12. Chem Lett. https://doi.org/10.1246/cl.2011.60

    Article  Google Scholar 

  80. Awaka J, Kijima N, Hayakawa H, Akimoto J (2009) Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. J Solid State Chem. https://doi.org/10.1016/j.jssc.2009.05.020

    Article  Google Scholar 

  81. Geiger CA, Alekseev E, Lazic B, Fisch M, Armbruster T, Langner R, Fechtelkord M, Kim N, Pettke T, Weppner W (2011) Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor. Inorg Chem. https://doi.org/10.1021/ic101914e

    Article  PubMed  Google Scholar 

  82. Inada R, Yasuda S, Tojo M, Tsuritani K, Tojo T, Sakurai Y (2016) Development of lithium-stuffed garnet-type oxide solid electrolytes with high ionic conductivity for application to all-solid-state batteries. Front Energy Res. https://doi.org/10.3389/fenrg.2016.00028

    Article  Google Scholar 

  83. Tao X, Liu Y, Liu W, Zhou G, Zhao J, Lin D, Zu C, Sheng O, Zhang W, Lee H-W, Cui Y (2017) Solid-state lithium–sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett 17:2967–2972. https://doi.org/10.1021/acs.nanolett.7b00221

    Article  CAS  PubMed  Google Scholar 

  84. Fu ZW, Liu WY, Li CL, Qin QZ, Yao Y, Lu F, High-K LPOT (2003) Films Appl. Phys Lett 83:5008–5010

    CAS  Google Scholar 

  85. Yu X, Bates JB, Jellison GE, Hart FX (1997) A stable thin-film lithium electrolyte: lithium phosphorus oxynitride. J Electrochem Soc. https://doi.org/10.1149/1.1837443

    Article  Google Scholar 

  86. Hamon Y, Douard A, Sabary F, Marcel C, Vinatier P, Pecquenard B, Levasseur A (2006) Influence of sputtering conditions on ionic conductivity of LiPON thin films. Solid State Ion. https://doi.org/10.1016/j.ssi.2005.10.021

    Article  Google Scholar 

  87. Nimisha CS, Rao KY, Venkatesh G, Rao GM, Munichandraiah N (2011) Sputter deposited LiPON thin films from powder target as electrolyte for thin film battery applications. Thin Solid Films. https://doi.org/10.1016/j.tsf.2011.01.087

    Article  Google Scholar 

  88. Nowak S, Berkemeier F, Schmitz G (2015) Ultra-thin LiPON films - fundamental properties and application in solid state thin film model batteries. J Power Sources. https://doi.org/10.1016/j.jpowsour.2014.10.202

    Article  Google Scholar 

  89. Zhao Y, Li X, Yan B, Li D, Lawes S, Sun X (2015) Significant impact of 2D graphene nanosheets on large volume change tin-based anodes in lithium-ion batteries: a review. J Power Sources 274:869–884

    Article  CAS  Google Scholar 

  90. Senevirathne K, Day CS, Gross MD, Lachgar A, Holzwarth NAW (2013) A new crystalline LiPON electrolyte: synthesis, properties, and electronic structure. Solid State Ion 233:95–101

    Article  CAS  Google Scholar 

  91. López-Aranguren P, Reynaud M, Głuchowski P, Bustinza A, Galceran M, López del Amo JM, Armand M, Casas-Cabanas M (2021) Crystalline LiPON as a bulk-type solid electrolyte. ACS Energy Lett 6:445–450. https://doi.org/10.1021/acsenergylett.0c02336

    Article  CAS  Google Scholar 

  92. Wang B, Chakoumakos BC, Sales BC, Kwak BS, Bates JB (1995) Synthesis, crystal structure, and ionic conductivity of a polycrystalline lithium phosphorus oxynitride with the γ-Li3PO4 structure. J Solid State Chem 115:313–323

    Article  CAS  Google Scholar 

  93. Suzuki N, Inaba T, Shiga T (2012) Electrochemical properties of LiPON films made from a mixed powder target of Li3PO4 and Li2O. Thin Solid Films. https://doi.org/10.1016/j.tsf.2011.08.107

    Article  Google Scholar 

  94. Zhou YN, Xue MZ, Fu ZW (2013) Nanostructured thin film electrodes for lithium storage and all-solid-state thin-film lithium batteries. J Power Sources. https://doi.org/10.1016/j.jpowsour.2013.01.183

    Article  Google Scholar 

  95. Xiao DL, Tong J, Feng Y, Zhong GH, Li WJ, Yang CL (2018) Improved performance of all-solid-state lithium batteries using LiPON electrolyte prepared with Li-rich sputtering target. Solid State Ion. https://doi.org/10.1016/j.ssi.2018.07.011

    Article  Google Scholar 

  96. Wang W, Yue X, Meng J, Wang J, Wang X, Chen H, Shi D, Fu J, Zhou Y, Chen J, Fu Z (2019) Lithium phosphorus oxynitride as an efficient protective layer on lithium metal anodes for advanced lithium-sulfur batteries. Energy Storage Mater 18:414–422. https://doi.org/10.1016/j.ensm.2018.08.010

    Article  Google Scholar 

  97. Minami K, Hayashi A, Ujiie S, Tatsumisago M (2011) Electrical and electrochemical properties of glass-ceramic electrolytes in the systems Li2S-P2S5-P2S3 and Li2S-P2S5-P2O5. Solid State Ion. https://doi.org/10.1016/j.ssi.2010.06.018

    Article  Google Scholar 

  98. Dewald GF, Ohno S, Kraft MA, Koerver R, Till P, Vargas-Barbosa NM, Janek J, Zeier WG (2019) Experimental assessment of the practical oxidative stability of lithium thiophosphate solid electrolytes. Chem Mater. https://doi.org/10.1021/acs.chemmater.9b01550

    Article  Google Scholar 

  99. Ohno S, Bernges T, Buchheim J, Duchardt M, Hatz AK, Kraft MA, Kwak H, Santhosha AL, Liu Z, Minafra N, Tsuji F, Sakuda A, Schlem R, Xiong S, Zhang Z, Adelhelm P, Chen H, Hayashi A, Jung YS, Lotsch BV, Roling B, Vargas-Barbosa NM, Zeier WG (2020) How certain are the reported ionic conductivities of thiophosphate-based solid electrolytes? An interlaboratory study. ACS Energy Lett. https://doi.org/10.1021/acsenergylett.9b02764

    Article  Google Scholar 

  100. Famprikis T, Canepa P, Dawson JA, Islam MS, Masquelier C (2019) Fundamentals of inorganic solid-state electrolytes for batteries. Nat Mater. https://doi.org/10.1038/s41563-019-0431-3

    Article  PubMed  Google Scholar 

  101. Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R (2016) High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy. https://doi.org/10.1038/nenergy.2016.30

    Article  Google Scholar 

  102. Harm S, Hatz AK, Moudrakovski I, Eger R, Kuhn A, Hoch C, Lotsch BV (2019) Lesson learned from NMR: characterization and ionic conductivity of LGPS-like Li7SiPS8. Chem Mater. https://doi.org/10.1021/acs.chemmater.8b04051

    Article  Google Scholar 

  103. Kuhn A, Köhler J, Lotsch BV (2013) Single-crystal X-ray structure analysis of the superionic conductor Li10GeP2S12. Phys Chem Chem Phys 15:11620–11622

    Article  CAS  Google Scholar 

  104. Bron P, Johansson S, Zick K, Der Günne JSA, Dehnen S, Roling B (2013) Li10SnP2S12: an affordable lithium superionic conductor. J Am Chem Soc. https://doi.org/10.1021/ja407393y

    Article  PubMed  Google Scholar 

  105. Krauskopf T, Culver SP, Zeier WG (2018) Bottleneck of diffusion and inductive effects in Li10Ge1-xSnxP2S12. Chem Mater. https://doi.org/10.1021/acs.chemmater.8b00266

    Article  Google Scholar 

  106. Hayashi A, Hama S, Morimoto H, Tatsumisago M, Minami T (2001) Preparation of Li2S-P2S5 amorphous solid electrolytes by mechanical milling. J Am Ceram Soc. https://doi.org/10.1111/j.1151-2916.2001.tb00685.x

    Article  Google Scholar 

  107. Dietrich C, Weber DA, Sedlmaier SJ, Indris S, Culver SP, Walter D, Janek J, Zeier WG (2017) Lithium ion conductivity in Li2S–P2S5 glasses–building units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7. J Mater Chem A 5:18111–18119

    Article  CAS  Google Scholar 

  108. Hayashi A, Noi K, Sakuda A, Tatsumisago M (2012) Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat Commun. https://doi.org/10.1038/ncomms1843

    Article  PubMed  Google Scholar 

  109. Hayashi A, Ohtsubo R, Nagao M, Tatsumisago M (2010) Characterization of Li2S–P2S5–Cu composite electrode for all-solid-state lithium secondary batteries. J Mater Sci 45:377–381

    Article  CAS  Google Scholar 

  110. Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M (2005) New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses. Adv Mater. https://doi.org/10.1002/adma.200401286

    Article  Google Scholar 

  111. Kato A, Yamamoto M, Sakuda A, Hayashi A, Tatsumisago M (2018) Mechanical properties of Li2S-P2S5 glasses with lithium halides and application in all-solid-state batteries. ACS Appl Ener Mater. https://doi.org/10.1021/acsaem.7b00140

    Article  Google Scholar 

  112. Oh DY, Ha AR, Lee JE, Jung SH, Jeong G, Cho W, Kim KS, Jung YS (2020) Wet-chemical tuning of Li3−xPS4 (0≤x≤0.3) enabled by dual solvents for all-solid-state lithium-ion batteries. ChemSusChem. https://doi.org/10.1002/cssc.201901850

    Article  PubMed  Google Scholar 

  113. Deiseroth HJ, Kong ST, Eckert H, Vannahme J, Reiner C, Zaiß T, Schlosser M (2008) Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew Chem Int Ed Engl. https://doi.org/10.1002/anie.200703900

    Article  PubMed  Google Scholar 

  114. Hanghofer I, Brinek M, Eisbacher SL, Bitschnau B, Volck M, Hennige V, Hanzu I, Rettenwander D, Wilkening HMR (2019) Substitutional disorder: structure and ion dynamics of the argyrodites Li6PS5Cl, Li6PS5Br and Li6PS5I. Phys Chem Chem Phys 21:8489–8507

    Article  CAS  Google Scholar 

  115. Kraft MA, Culver SP, Calderon M, Böcher F, Krauskopf T, Senyshyn A, Dietrich C, Zevalkink A, Janek J, Zeier WG (2017) Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I). J Am Chem Soc. https://doi.org/10.1021/jacs.7b06327

    Article  PubMed  PubMed Central  Google Scholar 

  116. Adeli P, Bazak JD, Park KH, Kochetkov I, Huq A, Goward GR, Nazar LF (2019) Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angew Chem Int Ed Engl. https://doi.org/10.1002/anie.201814222

    Article  PubMed  Google Scholar 

  117. Kraft MA, Ohno S, Zinkevich T, Koerver R, Culver SP, Fuchs T, Senyshyn A, Indris S, Morgan BJ, Zeier WG (2018) Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1-xGexS5I for all-solid-state batteries. J Am Chem Soc. https://doi.org/10.1021/jacs.8b10282

    Article  PubMed  Google Scholar 

  118. Ohno S, Helm B, Fuchs T, Dewald G, Kraft MA, Culver SP, Senyshyn A, Zeier WG (2019) Further evidence for energy landscape flattening in the superionic argyrodites Li6+xP1-xMxS5I (M = Si, Ge, Sn). Chem Mater. https://doi.org/10.1021/acs.chemmater.9b01857

    Article  Google Scholar 

  119. Kim JG, Son B, Mukherjee S, Schuppert N, Bates A, Kwon O, Choi MJ, Chung HY, Park S (2015) A review of lithium and non-lithium based solid state batteries. J Power Sources. https://doi.org/10.1016/j.jpowsour.2015.02.054

    Article  Google Scholar 

  120. Hong S, Wang Y, Kim N, Lee SB (2021) Polymer-based electrolytes for all-solid-state lithium–sulfur batteries: from fundamental research to performance improvement. J Mater Sci 56:8358–8382. https://doi.org/10.1007/s10853-021-05832-2

    Article  CAS  Google Scholar 

  121. Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly(ethylene oxide). Polymer. https://doi.org/10.1016/0032-3861(73)90146-8

    Article  Google Scholar 

  122. Shi J, Vincent CA (1993) The effect of molecular weight on cation mobility in polymer electrolytes. Solid State Ion. https://doi.org/10.1016/0167-2738(93)90268-8

    Article  Google Scholar 

  123. Lascaud S, Perrier M, Vallée A, Besner S, Prudʼhomme J, Armand M (1994) Phase diagrams and conductivity behavior of poly(ethylene oxide)-molten salt rubbery electrolytes. Macromolecules. https://doi.org/10.1021/ma00103a034

    Article  Google Scholar 

  124. Dollé M, Sannier L, Beaudoin B, Trentin M, Tarascon JM (2002) Live scanning electron microscope observations of dendritic growth in lithium/polymer cells. Electrochem Solid-State Lett. https://doi.org/10.1149/1.1519970

    Article  Google Scholar 

  125. Rosso M, Brissot C, Teyssot A, Dollé M, Sannier L, Tarascon JM, Bouchet R, Lascaud S (2006) Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochim Acta. https://doi.org/10.1016/j.electacta.2006.02.004

    Article  Google Scholar 

  126. Santiago A, Castillo J, Garbayo I, Saenz A, de Buruaga JA, Coca Clemente L, Qiao R Cid, Barreno M Martinez-Ibañez, Armand M, Zhang H, Li C (2021) Salt additives for improving cyclability of polymer-based all-solid-state lithium–sulfur batteries. ACS Appl Energy Mater. https://doi.org/10.1021/acsaem.1c00091

    Article  Google Scholar 

  127. Zhang Q, Liu K, Ding F, Liu X (2017) Recent advances in solid polymer electrolytes for lithium batteries. Nano Res. https://doi.org/10.1007/s12274-017-1763-4

    Article  Google Scholar 

  128. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature. https://doi.org/10.1038/28818

    Article  Google Scholar 

  129. Yang XQ, Lee HS, Hanson L, McBreen J, Okamoto Y (1995) Development of a new plasticizer for poly (ethylene oxide)-based polymer electrolyte and the investigation of their ion-pair dissociation effect. J Power Sources 54:198–204

    Article  CAS  Google Scholar 

  130. Lago N, Garcia-Calvo O, Lopezdelamo JM, Rojo T, Armand M (2015) All-solid-state lithium-ion batteries with grafted ceramic nanoparticles dispersed in solid polymer electrolytes. Chemsuschem. https://doi.org/10.1002/cssc.201500783

    Article  PubMed  Google Scholar 

  131. Manuel Stephan A, Nahm KS (2006) Review on composite polymer electrolytes for lithium batteries. Polymer. https://doi.org/10.1016/j.polymer.2006.05.069

    Article  Google Scholar 

  132. Do NST, Schaetzl DM, Dey B, Seabaugh AC, Fullerton-Shirey SK (2012) Influence of Fe2O3 nanofiller shape on the conductivity and thermal properties of solid polymer electrolytes: nanorods versus nanospheres. J Phys Chem C. https://doi.org/10.1021/jp3059454

    Article  Google Scholar 

  133. Tominaga Y, Yamazaki K (2014) Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles. Chem Commun. https://doi.org/10.1039/c3cc49588d

    Article  Google Scholar 

  134. Liu W, Lin D, Sun J, Zhou G, Cui Y (2016) Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano. https://doi.org/10.1021/acsnano.6b06797

    Article  PubMed  PubMed Central  Google Scholar 

  135. Wright PV (1975) Electrical conductivity in ionic complexes of poly(ethylene oxide). Br Polym J. https://doi.org/10.1002/pi.4980070505

    Article  Google Scholar 

  136. Marmorstein D, Yu TH, Striebel KA, McLarnon FR, Hou J, Cairns EJ (2000) Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. J Power Sources 89:219–226

    Article  CAS  Google Scholar 

  137. Jeong SS, Lim YT, Choi YJ, Cho GB, Kim KW, Ahn HJ, Cho KK (2007) Electrochemical properties of lithium sulfur cells using PEO polymer electrolytes prepared under three different mixing conditions. J Power Sources 174:745–750

    Article  CAS  Google Scholar 

  138. Zhang Y, Zhao Y, Gosselink D, Chen P (2015) Synthesis of poly (ethylene-oxide)/nanoclay solid polymer electrolyte for all solid-state lithium/sulfur battery. Ionics 21:381–385

    Article  CAS  Google Scholar 

  139. Busche MR, Adelhelm P, Sommer H, Schneider H, Leitner K, Janek J (2014) Systematical electrochemical study on the parasitic shuttle-effect in lithium-sulfur-cells at different temperatures and different rates. J Power Sources 259:289–299. https://doi.org/10.1016/j.jpowsour.2014.02.075

    Article  CAS  Google Scholar 

  140. Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J-G (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7:513–537. https://doi.org/10.1039/C3EE40795K

    Article  CAS  Google Scholar 

  141. Lin Y, Wang X, Liu J, Miller JD (2017) Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries. Nano Energy. https://doi.org/10.1016/j.nanoen.2016.11.045

    Article  Google Scholar 

  142. Zhang X, Zhang T, Shao Y, Cao H, Liu Z, Wang S, Zhang X (2021) Composite electrolytes based on poly(ethylene oxide) and lithium borohydrides for all-solid-state lithium–sulfur batteries. ACS Sustainable Chemistry & Engineering 9:5396–5404. https://doi.org/10.1021/acssuschemeng.1c00381

    Article  CAS  Google Scholar 

  143. Wang Y, Ji H, Zhang X, Shi J, Li X, Jiang X, Qu X (2021) Cyclopropenium cationic-based covalent organic polymer-enhanced poly(ethylene oxide) composite polymer electrolyte for all-solid-state Li–S battery. ACS Appl Mater Interfaces 13:16469–16477. https://doi.org/10.1021/acsami.1c02309

    Article  CAS  PubMed  Google Scholar 

  144. Wang L, Yin X, Jin C, Lai C, Qu G, Zheng GW (2020) Cathode-supported-electrolyte configuration for high-performance all-solid-state lithium–sulfur batteries. ACS Applied Energy Materials 3:11540–11547. https://doi.org/10.1021/acsaem.0c02347

    Article  CAS  Google Scholar 

  145. R Fang, H Xu, B Xu, X Li, Y Li, JB Goodenough, (2020) Reaction mechanism optimization of solid-state Li–S batteries with a PEO-based electrolyte. Adv Funct Mater 2001812

  146. Sheng O, Jin C, Luo J, Yuan H, Fang C, Huang H, Gan Y, Zhang J, Xia Y, Liang C, Zhang W, Tao X (2017) Ionic conductivity promotion of polymer electrolyte with ionic liquid grafted oxides for all-solid-state lithium-sulfur batteries. J Mater Chem A. https://doi.org/10.1039/c7ta03699j

    Article  Google Scholar 

  147. Zhang Y, Zhao Y, Gosselink D, Chen P (2015) Synthesis of poly(ethylene-oxide)/nanoclay solid polymer electrolyte for all solid-state lithium/sulfur battery. Ionics. https://doi.org/10.1007/s11581-014-1176-2

    Article  Google Scholar 

  148. Choudhury S, Mangal R, Agrawal A, Archer LA (2015) A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat Commun. https://doi.org/10.1038/ncomms10101

    Article  PubMed  Google Scholar 

  149. Lin Y, Li J, Liu K, Liu Y, Liu J, Wang X (2016) Unique starch polymer electrolyte for high capacity all-solid-state lithium sulfur battery. Green Chem. https://doi.org/10.1039/c6gc00444j

    Article  Google Scholar 

  150. Eshetu GG, Judez X, Li C, Bondarchuk O, Rodriguez-Martinez LM, Zhang H, Armand M (2017) Lithium azide as an electrolyte additive for all-solid-state lithium–sulfur batteries. Angew Chem Int Ed Engl. https://doi.org/10.1002/anie.201709305

    Article  PubMed  Google Scholar 

  151. Chen S, Ding B, Lin Q, Shi Y, Hu B, Li Z, Dou H, Zhang X (2021) Construction of stable solid electrolyte interphase on lithium anode for long-cycling solid-state lithium–sulfur batteries. J Electroanal Chem 880:114874. https://doi.org/10.1016/j.jelechem.2020.114874

    Article  CAS  Google Scholar 

  152. Elizalde-Segovia R, Irshad A, Zayat B, Narayanan SR (2020) Solid-state lithium-sulfur battery based on composite electrode and bi-layer solid electrolyte operable at room temperature. J Electrochem Soc 167:140529. https://doi.org/10.1149/1945-7111/abc4c0

    Article  CAS  Google Scholar 

  153. Zhang Z, Zhao B, Zhang S, Zhang J, Han P, Wang X, Ma F, Sun D, Jin Y, Kanamura K, Cui G (2021) A mixed electron/ion conducting interlayer enabling ultra-stable cycle performance for solid state lithium sulfur batteries. J Power Sources 487:229428. https://doi.org/10.1016/j.jpowsour.2020.229428

    Article  CAS  Google Scholar 

  154. Garbayo I, Santiago A, Judez X, de Buruaga AS, Castillo J, Muñoz-Márquez MA (2021) Alumina nanofilms as active barriers for polysulfides in high-performance all-solid-state lithium–sulfur batteries. ACS Appl Energy Mater 4:2463–2470. https://doi.org/10.1021/acsaem.0c03032

    Article  CAS  Google Scholar 

  155. Fu K, Gong Y, Dai J, Gong A, Han X, Yao Y, Wang C, Wang Y, Chen Y, Yan C, Li Y, Wachsman ED, Hu L (2016) Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1600422113

    Article  PubMed  PubMed Central  Google Scholar 

  156. Croce F, Persi L, Ronci F, Scrosati B (2000) Nanocomposite polymer electrolytes and their impact on the lithium battery technology. Solid State Ion. https://doi.org/10.1016/S0167-2738(00)00329-5

    Article  Google Scholar 

  157. Lin CW, Hung CL, Venkateswarlu M, Hwang BJ (2005) Influence of TiO2 nano-particles on the transport properties of composite polymer electrolyte for lithium-ion batteries. J Power Sources. https://doi.org/10.1016/j.jpowsour.2005.03.028

    Article  Google Scholar 

  158. Wang Z, Huang X, Chen L (2003) Understanding of effects of nano-Al2O3 particles on ionic conductivity of composite polymer electrolytes. Electrochem Solid-State Lett. https://doi.org/10.1149/1.1615352

    Article  Google Scholar 

  159. Xi J, Tang X (2004) Nanocomposite polymer electrolyte based on poly(ethylene oxide) and solid super acid for lithium polymer battery. Chem Phys Lett. https://doi.org/10.1016/j.cplett.2004.06.054

    Article  Google Scholar 

  160. Chu PP, Jaipal Reddy M (2003) Sm2O3 composite PEO solid polymer electrolyte. J Power Sources. https://doi.org/10.1016/S0378-7753(02)00717-6

    Article  Google Scholar 

  161. Liu Y, Lee JY, Hong L (2004) In situ preparation of poly(ethylene oxide)-SiO2 composite polymer electrolytes. J Power Sources. https://doi.org/10.1016/j.jpowsour.2003.11.026

    Article  Google Scholar 

  162. Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature. https://doi.org/10.1038/35104620

    Article  PubMed  Google Scholar 

  163. Kharton VV, Marques FMB, Atkinson A (2004) Transport properties of solid oxide electrolyte ceramics: a brief review. Solid State Ion. https://doi.org/10.1016/j.ssi.2004.06.015

    Article  Google Scholar 

  164. Atkinson A, Ramos TMGM (2000) Chemically-induced stresses in ceramic oxygen ion-conducting membranes. Solid State Ion. https://doi.org/10.1016/S0167-2738(99)00331-8

    Article  Google Scholar 

  165. Goodenough JB (2003) Oxide-ion electrolytes. Annu Rev Mater Res. https://doi.org/10.1146/annurev.matsci.33.022802.091651

    Article  Google Scholar 

  166. Yashima M, Ohtake K, Kakihana M, Arashi H, Yoshimura M (1996) Determination of tetragonal-cubic phase boundary of Zr1-xRxO2-x/2 (R = Nd, Sm, Y, Er and Yb) by Raman scattering. J Phys Chem Solids. https://doi.org/10.1016/0022-3697(95)00085-2

    Article  Google Scholar 

  167. Ochrombel R, Schneider J, Hildmann B, Saruhan B (2010) Thermal expansion of EB-PVD yttria stabilized zirconia. J Eur Ceram Soc. https://doi.org/10.1016/j.jeurceramsoc.2010.05.008

    Article  Google Scholar 

  168. Liu W, Liu N, Sun J, Hsu PC, Li Y, Lee HW, Cui Y (2015) Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. https://doi.org/10.1021/acs.nanolett.5b00600

    Article  PubMed  PubMed Central  Google Scholar 

  169. Li X, Wang D, Wang H, Yan H, Gong Z, Yang Y (2019) Poly(ethylene oxide)–Li10SnP2S12 composite polymer electrolyte enables high-performance all-solid-state lithium sulfur battery. ACS Appl Mater Interfaces 11:22745–22753. https://doi.org/10.1021/acsami.9b05212

    Article  CAS  PubMed  Google Scholar 

  170. Li Z, Huang J, Yann Liaw B, Metzler V, Zhang J (2014) A review of lithium deposition in lithium-ion and lithium metal secondary batteries. J Power Sources. https://doi.org/10.1016/j.jpowsour.2013.12.099

    Article  Google Scholar 

  171. Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J (2017) Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy. https://doi.org/10.1016/j.nanoen.2017.01.028

    Article  Google Scholar 

  172. Han X, Gong Y, Fu K, He X, Hitz GT, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman ED, Hu L (2017) Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater. https://doi.org/10.1038/nmat4821

    Article  PubMed  Google Scholar 

  173. Han F, Westover AS, Yue J, Fan X, Wang F, Chi M, Leonard DN, Dudney NJ, Wang H, Wang C (2019) High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat Energy. https://doi.org/10.1038/s41560-018-0312-z

    Article  Google Scholar 

  174. Y. Song, L. Yang, W. Zhao, Z. Wang, Y. Zhao, Z. Wang, Q. Zhao, H. Liu, F. Pan, Solid‐state electrolytes: revealing the short‐circuiting mechanism of garnet‐based solid‐state electrolyte (Adv. Energy Mater. 21/2019), Advanced Energy Materials. 9 (2019) 1970076.

  175. Harry KJ, Hallinan DT, Parkinson DY, MacDowell AA, Balsara NP (2014) Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat Mater. https://doi.org/10.1038/nmat3793

    Article  PubMed  Google Scholar 

  176. Huo H, Wu B, Zhang T, Zheng X, Ge L, Xu T, Guo X, Sun X (2019) Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries. Energy Storage Mater. https://doi.org/10.1016/j.ensm.2019.01.007

    Article  Google Scholar 

  177. Zhang J, Yue L, Kong Q, Liu Z, Zhou X, Zhang C, Xu Q, Zhang B, Ding G, Qin B, Duan Y, Wang Q, Yao J, Cui G, Chen L (2014) Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery. Sci Rep. https://doi.org/10.1038/srep03935

    Article  PubMed  PubMed Central  Google Scholar 

  178. Li D, Chen L, Wang T, Fan LZ (2018) 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.7b18123

    Article  PubMed  PubMed Central  Google Scholar 

  179. Khurana R, Schaefer JL, Archer LA, Coates GW (2014) Suppression of lithium dendrite growth using cross-linked polyethylene/poly (ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J Am Chem Soc 136:7395–7402

    Article  CAS  Google Scholar 

  180. Xia Y, Fujieda T, Tatsumi K, Prosini PP, Sakai T (2001) Thermal and electrochemical stability of cathode materials in solid polymer electrolyte. J Power Sources. https://doi.org/10.1016/S0378-7753(00)00533-4

    Article  Google Scholar 

  181. Miyashiro H, Kobayashi Y, Seki S, Mita Y, Usami A, Nakayama M, Wakihara M (2005) Fabrication of all-solid-state lithium polymer secondary batteries using Al2O3-coated LiCoO2. Chem Mater 17:5603–5605

    Article  CAS  Google Scholar 

  182. Ma J, Liu Z, Chen B, Wang L, Yue L, Liu H, Zhang J, Liu Z, Cui G (2017) A strategy to make high voltage LiCoO2 compatible with polyethylene oxide electrolyte in all-solid-state lithium ion batteries. J Electrochem Soc 164:A3454

    Article  CAS  Google Scholar 

  183. Zhou W, Wang Z, Pu Y, Li Y, Xin S, Li X, Chen J, Goodenough JB (2019) Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries. Adv Mater. https://doi.org/10.1002/adma.201805574

    Article  PubMed  PubMed Central  Google Scholar 

  184. Zhang Y, Chen F, Yang D, Zha W, Li J, Shen Q, Zhang X, Zhang L (2017) High capacity all-solid-state lithium battery using cathodes with three-dimensional Li + conductive network. J Electrochem Soc. https://doi.org/10.1149/2.1501707jes

    Article  PubMed  PubMed Central  Google Scholar 

  185. Kim KH, Iriyama Y, Yamamoto K, Kumazaki S, Asaka T, Tanabe K, Fisher CAJ, Hirayama T, Murugan R, Ogumi Z (2011) Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery. J Power Sources. https://doi.org/10.1016/j.jpowsour.2010.07.073

    Article  PubMed  PubMed Central  Google Scholar 

  186. Park K, Yu BC, Jung JW, Li Y, Zhou W, Gao H, Son S, Goodenough JB (2016) Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: interface between LiCoO2 and garnet-Li7La3Zr2O12. Chem Mater. https://doi.org/10.1021/acs.chemmater.6b03870

    Article  Google Scholar 

  187. Han F, Yue J, Chen C, Zhao N, Fan X, Ma Z, Gao T, Wang F, Guo X, Wang C (2018) Interphase engineering enabled all-ceramic lithium battery. Joule. https://doi.org/10.1016/j.joule.2018.02.007

    Article  Google Scholar 

  188. van den Broek J, Afyon S, Rupp JLM (2016) Interface-engineered all-solid-state Li-ion batteries based on garnet-type fast Li+ conductors. Adv Energy Mater. https://doi.org/10.1002/aenm.201600736

    Article  Google Scholar 

  189. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4418

    Article  CAS  Google Scholar 

  190. Fasciani C, Panero S, Hassoun J, Scrosati B (2015) Novel configuration of poly (vinylidenedifluoride)-based gel polymer electrolyte for application in lithium-ion batteries. J Power Sources 294:180–186

    Article  CAS  Google Scholar 

  191. Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources. https://doi.org/10.1016/S0378-7753(98)00193-1

    Article  Google Scholar 

  192. Kızılaslan A, Akbulut H (2019) Assembling all-solid-state lithium–sulfur batteries with Li3N-protected anodes. ChemPlusChem 84:183–189. https://doi.org/10.1002/cplu.201800539

    Article  CAS  PubMed  Google Scholar 

  193. Kızılaslan A, Çetinkaya T, Akbulut H (2020) 2H-MoS2 as an artificial solid electrolyte interface in all-solid-state lithium–sulfur batteries. Adv Mater Interfaces 7:2001020. https://doi.org/10.1002/admi.202001020

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by a grant from the Qatar University under its Collaborative Grant number QUCG-CAS-20/21–4. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of Qatar University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasr Bensalah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Luna, Y., Abdullah, M., Dimassi, S.N. et al. All-solid lithium-sulfur batteries: present situation and future progress. Ionics 27, 4937–4960 (2021). https://doi.org/10.1007/s11581-021-04284-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04284-7

Keywords

Navigation