Skip to main content
Log in

DMH and NA–based cyanide-free silver electroplating bath: a promising alternative to cyanide ones in microelectronics

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

To evaluate the application of mirror-bright silver deposit from 5,5-dimethylhydantoin (DMH) and nicotinic acid (NA)–based cyanide-free silver electroplating bath, the performance comparison of cyanide-free silver deposit obtained from the introduced bath with conventional cyanide-based one was carried out. The macroscopic appearance, surface morphology, adhesive strength, and welding property of the introduced mirror-bright silver deposit were determined. Equal to the cyanide-based silver electroplating bath, mirror-bright silver deposits with excellent leveling capability, and smooth and compact morphology, as well as excellent welding property could be obtained from the studied DMH and NA–based silver electroplating bath. Thus, the investigated DMH and NA–based silver electroplating bath could be a promising alternative to the conventional cyanide ones for the applications of silver electroplating in decorative purposes and microelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang B, Ruan T, Chen Y, Jin F, Peng L, Zhou Y, Wang D, Dou S (2020) Graphene-based composites for electrochemical energy storage. Energy Storage Mater 24:22–51

    Article  Google Scholar 

  2. Wang F, Wang B, Ruan T, Gao T, Song R, Jin F, Zhou Y, Wang D, Liu H, Dou S (2019) Construction of Structure-Tunable Si@Void@C Anode Materials for Lithium-Ion Batteries through Controlling the Growth Kinetics of Resin. ACS Nano 13:12219–12229

    Article  CAS  Google Scholar 

  3. Li H, Liu A, Ren X, Yang Y, Gao L, Fan M, Ma T (2019) A black phosphorus/Ti3C2 MXene nanocomposite for sodium-ion batteries: a combined experimental and theoretical study. Nanoscale 11:19862–19869

    Article  CAS  Google Scholar 

  4. Cai K, Li Y, Lang X, Li L, Zhang Q (2019) Synergistic effect of sulfur on electrochemical performances of carbon-coated vanadium pentoxide cathode materials with polyvinyl alcohol as carbon source for lithium-ion batteries. Int J Energy Res 43:7664–7671

    Article  CAS  Google Scholar 

  5. Lang X, Zhao Y, Cai K, Li L, Chen D, Zhang Q (2019) A Facile Synthesis of Stable TiO2/TiC Composite Material as Sulfur Immobilizers for Cathodes of Lithium–Sulfur Batteries with Excellent Electrochemical Performances. Energy Technol-Ger 7:1900543

    Article  CAS  Google Scholar 

  6. Liu A, Gao M, Ren X, Meng F, Yang Y, Gao L, Yang Q, Ma T (2020) Current progress in electrocatalytic carbon dioxide reduction to fuels on heterogeneous catalysts. J Mater Chem A 8:3541–3562

    Article  CAS  Google Scholar 

  7. Ren X, Lv Q, Liu L, Liu B, Wang Y, Liu A, Wu G (2020) Current progress of Pt and Pt-based electrocatalysts used for fuel cells. Sustainable Energy & Fuels 4:15–30

    Article  CAS  Google Scholar 

  8. Liu A, Gao M, Ren X, Meng F, Yang Y, Yang Q, Guan W, Gao L, Liang X, Ma T (2020) A two-dimensional Ru@MXene catalyst for highly selective ambient electrocatalytic nitrogen reduction. Nanoscale 12:10933–10938

    Article  CAS  Google Scholar 

  9. Liu A, Yang Q, Ren X, Meng F, Gao L, Gao M, Yang Y, Ma T, Wu G (2020) Energy- and cost-efficient NaCl-assisted synthesis of MAX-phase Ti3AlC2 at lower temperature. Ceram Int 46:6934–6939

    Article  CAS  Google Scholar 

  10. Liu A, Ren X (2020) 8 - Power Ready for Driving Catalysis and Sensing: Nanomaterials Designed for Renewable Energy Storage. In: Zhao Q (ed) Advanced Nanomaterials for Pollutant Sensing and Environmental Catalysis. Elsevier, pp 307–346

  11. Liu A, Li C, Ren X, Gao L, Ma T (2020) Co loaded on graphene with interfacial structure as high performance catalyst for 4e− ORR: a DFT study. Ionics

  12. Patil YB, Paknikar KM (2000) Biodetoxification of silver–cyanide from electroplating industry wastewater. Lett Appl Microbiol 30:33–37

    Article  CAS  Google Scholar 

  13. Lasko CL, Hurst MP (1999) An Investigation into the Use of Chitosan for the Removal of Soluble Silver from Industrial Wastewater. Environ Sci Technol 33:3622–3626

    Article  CAS  Google Scholar 

  14. Márquez K, Staikov G, Schultze JW (2003) Silver deposition on silicon and glassy carbon. A comparative study in cyanide medium. Electrochim Acta 48:875–882

    Article  Google Scholar 

  15. Baker BC, Freeman M, Melnick B, Wheeler D, Josell D, Moffat TP (2003) Superconformal Electrodeposition of Silver from a KAg(CN)2-KCN-KSeCN Electrolyte. J Electrochem Soc 150:C61–C66

    Article  CAS  Google Scholar 

  16. Bozzini B, D'Urzo L, Mele C, Romanello V (2008) A SERS investigation of cyanide adsorption and reactivity during the electrodeposition of gold, silver, and copper from aqueous cyanocomplexes solutions. J Phys Chem C 112:6352–6358

    Article  CAS  Google Scholar 

  17. Hossain SA, Saitou M (2008) Surface roughness of thin silver films pulse-plated using silver cyanide-thiocyanate electrolyte. J Appl Electrochem 38:1653–1657

    Article  Google Scholar 

  18. Baltrūnas G (2003) The mechanism of electrode process in the system silver/silver cyanide complexes. Electrochim Acta 48:3659–3664

    Article  Google Scholar 

  19. Ren X, Song Y, Liu A, Zhang J, Yuan G, Yang P, Zhang J, An M, Matera D, Wu G (2015) Computational Chemistry and Electrochemical Studies of Adsorption Behavior of Organic Additives during Gold Deposition in Cyanide-free Electrolytes. Electrochim Acta 176:10–17

    Article  CAS  Google Scholar 

  20. Ren X, Song Y, Liu A, Zhang J, Yang P, Zhang J, Yuan G, An M, Osgood H, Wu G (2015) Role of polyethyleneimine as an additive in cyanide-free electrolytes for gold electrodeposition. RSC Adv 5:64806–64813

    Article  CAS  Google Scholar 

  21. Ren X, Song Y, Liu A, Zhang J, Yang P, Zhang J, An M (2015) Experimental and theoretical studies of DMH as a complexing agent for a cyanide-free gold electroplating electrolyte. RSC Adv 5:64997–65004

    Article  CAS  Google Scholar 

  22. Zhang J, Liu A, Ren X, Zhang J, Yang P, An M (2014) Electrodeposit Copper from alkaline cyanide-free baths containing 5, 5'- dimethylhydantoin and citrate as complex agents. RSC Adv 4:38012–38026

    Article  CAS  Google Scholar 

  23. Fishelson N, Inberg A, Croitoru N, Shacham-Diamand Y (2012) Highly corrosion resistant bright silver metallization deposited from a neutral cyanide-free solution. Microelectron Eng 92:126–129

    Article  CAS  Google Scholar 

  24. Zhang R, Lin W, Lawrence K, Wong CP (2010) Highly reliable, low cost, isotropically conductive adhesives filled with Ag-coated Cu flakes for electronic packaging applications. Int J Adhes Adhes 30:403–407

    Article  Google Scholar 

  25. Masoud EM, Mousa MA (2015) Silver-doped silver vanadate glass composite electrolyte: structure and an investigation of electrical properties. Ionics 21:1095–1103

    Article  CAS  Google Scholar 

  26. Foster DG, Shapir Y, Jorne J (2005) The Effect of Rate of Surface Growth on Roughness Scaling. J Electrochem Soc 152:C462–C465

    Article  CAS  Google Scholar 

  27. Foster DG, Shapir Y, Jorné J (2003) Scaling of Roughness in Silver Electrodeposition. J Electrochem Soc 150:C375–C380

    Article  CAS  Google Scholar 

  28. Gonnissen D, Vandeputte S, Hubin A, Vereecken J (1996) Investigation of the mechanism of silver deposition from thiosulphate solutions by means of acimpedance measurements and surface-enhanced Raman spectroscopy. Electrochim Acta 41:1051–1056

    Article  CAS  Google Scholar 

  29. Vandeputte S, Hubin A, Vereecken J (1997) Influence of the sodium nitrate content on the rate of the electrodeposition of silver from thiosulphate solutions. Electrochim Acta 42:3429–3441

    Article  CAS  Google Scholar 

  30. Xie B-G, Sun J-J, Lin Z-B, Chen G-N (2009) Electrodeposition of Mirror-Bright Silver in Cyanide-Free Bath Containing Uracil as Complexing Agent Without a Separate Strike Plating Process. J Electrochem Soc 156:D79–D83

    Article  CAS  Google Scholar 

  31. Lin Z-B, Xie B-G, Chen J-S, Sun J-J, Chen G-N (2009) Nucleation mechanism of silver during electrodeposition on a glassy carbon electrode from a cyanide-free bath with 2-hydroxypyridine as a complexing agent. J Electroanal Chem 633:207–211

    Article  CAS  Google Scholar 

  32. Lin Z-B, Tian J-H, Xie B-G, Tang Y-A, Sun J-J, Chen G-N, Ren B, Mao B-W, Tian Z-Q (2009) Electrochemical and in Situ SERS Studies on the Adsorption of 2-Hydroxypyridine and Polyethyleneimine during Silver Electroplating. J Phys Chem C 113:9224–9229

    Article  CAS  Google Scholar 

  33. Tsai M-C, Zhuang D-X, Chen P-Y (2010) Electrodeposition of macroporous silver films from ionic liquids and assessment of these films in the electrocatalytic reduction of nitrate. Electrochim Acta 55:1019–1027

    Article  CAS  Google Scholar 

  34. Bomparola R, Caporali S, Lavacchi A, Bardi U (2007) Silver electrodeposition from air and water-stable ionic liquid: An environmentally friendly alternative to cyanide baths. Surf Coat Technol 201:9485–9490

    Article  CAS  Google Scholar 

  35. Puszyńska-Tuszkanow M, Grabowski T, Daszkiewicz M, Wietrzyk J, Filip B, Maciejewska G, Cieślak-Golonka M (2011) Silver(I) complexes with hydantoins and allantoin: Synthesis, crystal and molecular structure, cytotoxicity and pharmacokinetics. J Inorg Biochem 105:17–22

    Article  Google Scholar 

  36. Liu A, Ren X, An M, Zhang J, Yang P, Wang B, Zhu Y, Wang C (2014) A Combined Theoretical and Experimental Study for Silver Electroplating. Sci Rep 4:3837

    Article  Google Scholar 

  37. Liu A, Ren X, Wang B, Zhang J, Yang P, Zhang J, An M (2014) Complexing Agent Study via Computational Chemistry for Environmentally Friendly Silver Electrodeposition and the Application of Silver Deposit. RSC Adv 4:40930–40940

    Article  CAS  Google Scholar 

  38. Liu A, Ren X, Zhang J, Yuan G, Yang P, Zhang J, An M (2015) A composite additive used for an excellent new cyanide-free silver plating bath. New J Chem 39:2409–2412

    Article  Google Scholar 

  39. Liu A, Ren X, An M (2017) A composite additive used for a new cyanide-free silver plating bath (II): an insight by electrochemical measurements and quantum chemical calculation. New J Chem 41:11104–11112

    Article  CAS  Google Scholar 

  40. Aoh J-N, Chuang C-L (2004) Development of a thermosonic wire-bonding process for gold wire bonding to copper pads using argon shielding. J Electron Mater 33:300–311

    Article  CAS  Google Scholar 

  41. Clatterbaugh G, Weiner JA, Charles H Jr (1984) Gold-Aluminum intermetallics: Ball bond shear testing and thin film reaction couples. Components, Hybrids, and Manufacturing Technology, IEEE Transactions on 7:349–356

    Article  Google Scholar 

  42. Lee J, Mayer M, Zhou Y (2007) The Feasibility of Au Ball Bonding on Sn-Plated Cu. J Electron Mater 36:682–689

    Article  Google Scholar 

Download references

Funding

Supports of the National Natural Science Foundation of China (21902021, 21908017, and 21972037), the Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science (20180510020), the Fundamental Research Funds for the Central Universities (DUT20RC(4)020 and DUT20RC(4)018), and Supercomputing Center of Dalian University of Technology for this work are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anmin Liu or Maozhong An.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, A., Ren, X., Wang, C. et al. DMH and NA–based cyanide-free silver electroplating bath: a promising alternative to cyanide ones in microelectronics. Ionics 27, 417–422 (2021). https://doi.org/10.1007/s11581-020-03541-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03541-5

Keywords

Navigation