Skip to main content
Log in

Silver-doped silver vanadate glass composite electrolyte: structure and an investigation of electrical properties

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Structural and electrical properties of the ternary ionic–electronic conducting glass system xAgI–(1 − x)[0.67Ag2O–0.33V2O5], where x = 0.4, 0.5, 0.6, 0.7, and 0.8 were studied for emphasizing the influence of silver iodide concentration on the transport properties of the based vanadate glasses. The glasses were prepared by melt quenching technique and characterized using X-ray diffraction (XRD), FTIR spectra, and differential thermal analysis (DTA). Electrical conductivity (σ), dielectric constant (ε′), dielectric loss (ε″), and impedance spectra (Z′-Z″) were studied for all samples. All glasses showed a mixed ionic–electronic conductance with a high ionic conductivity for the sample with x = 0.7. The electronic contribution to the total conductivity and the ionic (t i) and electronic transport numbers (t e) were determined for each glass sample using Wagner’s DC polarization technique. The variation in electrical properties with each of composition, temperature, and frequency was analyzed and discussed.

AgI dopant (0.7 mol) created more opened vanadate network structure and enhanced both ion migration and orientation and as a result showed a high DC conductivity and ionic transfer number at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Varsamis CP, Kamitsos EI, Chryssikos GD (2000) Solid State Ionics 136–137:1031

    Article  Google Scholar 

  2. Bhattacharya S, Ghosh A (2003) Solid State Ionics 161:61

    Article  CAS  Google Scholar 

  3. Srilatha K, Sambasiva Rao K, Gandhi Y, Ravikumar V, Veeraiah N (2010) J Alloy Compd 507(2):391

    Article  CAS  Google Scholar 

  4. Foltyn M, Wasiucionek M, Garbarczyk J, Nowiński JL (2005) Solid State Ionics 176(25–28):2137

    Article  CAS  Google Scholar 

  5. El-Shaarawy MG, Bayoumy WA (2004) J Phys Soc of Japan 77:207

    Google Scholar 

  6. Murawski SL, Barczyński RJ (2005) Solid State Ionics 176(25–28):2145

    Article  CAS  Google Scholar 

  7. Garbarczyk JE, Wasiucionek M, Machowski P, Jakubowsk W (1999) Solid State Ionics 119(1–4):9

    Article  CAS  Google Scholar 

  8. Wasiucionek M, Garbarczyk JE, Wnȩtrzewski B, Machowski P, Jakubowski W (1996) Solid State Ionics 92(1–2):15

    Google Scholar 

  9. Machowski P, Garbarczyk JE, Wasiucionek M (2003) Solid State Ionics 157(1–4):281

    Article  CAS  Google Scholar 

  10. Laplume J (1955) Onde Electr 35:355

    Google Scholar 

  11. Agrawal RC, Kumar R (1994) J Phys D Appl Phys 27:2432

    Article  Google Scholar 

  12. Padmasree KP, Kanchan DK, Panchal HR, Awasthi AM, Bharadwaj S (2005) Solid State Commun 136:102

    Article  CAS  Google Scholar 

  13. Dimitriev Y, Dimitrov V, Arnaudov M, Topalov D (1983) J Non Cryst Sol 57:147

    Article  CAS  Google Scholar 

  14. Chiodelli G, Magistris A, Villa M, Bjorkstam JL (1982) J Non Cryst Sol 51:143

    Article  CAS  Google Scholar 

  15. Exarhos GJ, Risen WM (1972) Solid State Commun 11:755

    Article  CAS  Google Scholar 

  16. Panchal HR, Kanchan DR, Somayjulu DRS (1969) Mater Sci Forum 223–224:301

    Google Scholar 

  17. Jayasinghe GDLK, Diassanayake MAKL, Bandaranayake PWSK, Souquet JL, Foscallo D (1999) Solid State Ionics 121:19

    Article  CAS  Google Scholar 

  18. Sekhon SS, Chandra S (1999) J Mater Sci Lett 18:635

    Article  CAS  Google Scholar 

  19. Chandra S (1981) “Superionic solids”. North-Holland Publ.Co, Amsterdam

    Google Scholar 

  20. Minami T (1983) J Non Cryst Sol 56:15

    Article  CAS  Google Scholar 

  21. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric Press, London

    Google Scholar 

  22. Baranovskii SD, Cordes H (1999) J Chem Phys 111:7546

    Article  CAS  Google Scholar 

  23. Vogel M (2004) Phys Rev B 70:094302

    Article  Google Scholar 

  24. Garcia-Belmonte G, Bisquert J (2004) J Non Cryst Solids 337:272

    Article  CAS  Google Scholar 

  25. Dyre JC, Schoder TB (2000) Rev Mod Phys 72:873

    Article  Google Scholar 

  26. Bale S, Rahman S (2012) Mat Res Bull 47:1153

    Article  CAS  Google Scholar 

  27. Funke K (1993) Prog Solid State Chem 22:111

    Article  CAS  Google Scholar 

  28. Pant M, Kanchan DK, Sharma P, Jayswal MS (2008) Mat Sci Eng 149(1):18

    Article  CAS  Google Scholar 

  29. Sidebottom DL (1999) Phys Rev Lett 82:3653

    Article  CAS  Google Scholar 

  30. Schroder TB, Dyre JC (2000) Phys Rev Lett 84:310

    Article  CAS  Google Scholar 

  31. Bunde A, Ingram MD, Maass P (1994) J Non Cryst Sol 17:1222

    Article  Google Scholar 

  32. Sidebottom L, Roling B, Funke K (2000) Phys Rev B 63:024301

    Article  Google Scholar 

  33. Amderson S (1955) J Am Ceram Soc 38:370

    Article  Google Scholar 

  34. Laskar AL, Chandra S (1989) “Superionic solids and solid electrolytes”: recent trends. Academic, New York

    Google Scholar 

  35. Giuntini JC, Zanchetta JV, Jullien D, Eholie R, Houenou P (1981) J Non-Cryst Solids 45:57

    Article  CAS  Google Scholar 

  36. Soliman SM (1998) Ph.D. Thesis, Faculty of Science, Benha University, Benha, Egypt

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emad M. Masoud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masoud, E.M., Mousa, M.A. Silver-doped silver vanadate glass composite electrolyte: structure and an investigation of electrical properties. Ionics 21, 1095–1103 (2015). https://doi.org/10.1007/s11581-014-1283-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1283-0

Keywords

Navigation