Skip to main content
Log in

The Importance of Electroless Metallic Build-Up on Surface Modified Substrates for Multifunctional Engineering Applications: A Recent Progress Update

  • Review Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Electroless plating is a widely used methodology adopted by the industries as well as the academia as it permits the deposition of the metal onto various substrates like metals, ceramics or polymer devoid the usage of electricity. Extensive investigations have been conducted over the past decades on electroless plating owing to its continuous and uniform deposition of metal onto any substrate without electricity, which helps in augmenting the strength, structure and corrosion resistance of the substrate. Electroless plating helps in converting non-conductive substrate conductive by metalizing the substrate, wherein the metallic layer is deposited onto the substrate. Platings can be specifically tailored for realizing coveted properties by selecting the composition for versatile engineering applications extending from electronics to automobiles to avionics. This review article enumerates the various metallic electroless plating like nickel, copper, gold and silver with respect to copious substrates like metals, ceramics and polymers for above-mentioned engineering applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Faraji S, Rahim A A, Mohamed N, Sipaut C S, and Raja B, Mater Chem Phys 129 (2011) 1063.

    CAS  Google Scholar 

  2. Faraji S, Rahim A A, Mohamed N, and Sipaut C S, Surf Coat Technology 206 (2011) 1259.

    CAS  Google Scholar 

  3. Faraji S, Faraji A H, and Noori S R, Mater Des 54 (2014) 570.

    CAS  Google Scholar 

  4. Sonia T S, Mini P A, Nandhini R, Sujith K, Avinash B, Nair S V, and Subramanian K R V, Bull Mater Sci 36 (2013) 547.

    CAS  Google Scholar 

  5. Faraji S, Ani F N, Renew Sustain Energy Rev 42 (2015) 823.

    CAS  Google Scholar 

  6. Reade G W, Kerr C, Barker B D, and Walsh F C, Trans Inst Met Finish 76 (1998) 149.

    CAS  Google Scholar 

  7. Kerr C, Barker B D, and Walsh F C, Trans Inst Met Finish 75 (1997) 81.

    CAS  Google Scholar 

  8. Nahle A H, Kerr C, Barker B D, and Walsh F C, Trans Inst Met Finish 76 (1998) 29.

    CAS  Google Scholar 

  9. Kerr C, Court S, Barker B D, and Walsh F C, Surf Coat Technol 202 (2008) 5092.

    Google Scholar 

  10. Mallory G O, and Hajdu J B, Electroless Plating Fundamentals & Applications, American Electroplaters and Surface Finisher Society, New York (1990).

    Google Scholar 

  11. Riedel W, Electroless Nickel Plating, ASM International, Finishing Publications, Materials Park (1991).

    Google Scholar 

  12. Court S, Kerr C, Ponce de León C, Smith J R, Barker B D, and Walsh F C, Trans Inst Met Finish 95 (2017) 97.

    CAS  Google Scholar 

  13. Oraon B, Majumdar G, and Ghosh B, Mater Des 27 (2006)1035.

    CAS  Google Scholar 

  14. Li N, The Applied Technology of Electroless Plating, Beijing: Chemical Engineering Publisher; (2003).

    Google Scholar 

  15. Tummala R, Guduru R K, and Mohanty P S, J Power Sources 209 (2012) 44.

    CAS  Google Scholar 

  16. Zheng C, Qian W, Cui C, Xu G, Zhao M, and Tian G, J Nat Gas Chem 21 (2012) 233.

    CAS  Google Scholar 

  17. Dong X, Wang J, Wang J, Chan-Park M B, Li X, and Wang L, Mater Chem Phys 134 (2012) 576.

    CAS  Google Scholar 

  18. Li Y, Xie H, Li J, and Wang J, Mater Letter 102–103 (2013) 30.

    Google Scholar 

  19. Zhang S., Li Y, and Pan N., J Power Sources 206 (2012) 476.

    CAS  Google Scholar 

  20. Walsh F C, and Ponce de Leon C, Trans Inst Met Finish 92 (2014) 83.

    CAS  Google Scholar 

  21. Faraji S, Electroless Copper Composite Coatings Reinforced with Silicon Carbide and Graphite Particles, Pinang: UniversitiSains Malaysia (2011).

    Google Scholar 

  22. Kumar A, Kumar M, Singh A, Kumar S, and Kumar D, Micro Electr Eng 87 (2010) 286.

    CAS  Google Scholar 

  23. Jin J-G, Lee S-K, and Kim Y-H, Thin Solid Films 466 (2004) 272.

    CAS  Google Scholar 

  24. Sharma R, Agarwal R C, and Agarwal V, Appl Surf Sci 252 (2006) 8487.

    CAS  Google Scholar 

  25. Li D, Goodwin K, and Yang C-L, J Mater Sci 43 (2008) 7121.

    CAS  Google Scholar 

  26. A. Wurtz, C R Acad Sci 18 (1844) 702.

    Google Scholar 

  27. Brenner A, and Ridell G, J Res Natl Bur Stand 37 (1946) 1725.

    Google Scholar 

  28. Bergstrom E A, Surface metalizing method, US Patent 2702253 (1955).

  29. Gomez J, and Kalu E E, J Power Sources 230 (2013) 218.

    CAS  Google Scholar 

  30. Choi J, Sauer G, Nielsch K, Wehrspohn R B, and Gosele U, Chem Mater 15 (2003) 776.

    CAS  Google Scholar 

  31. Juarez B H, Rubio S, Sanchez-Dehesa J, and Lopez C, Adv Mater 14 (2002) 1486.

    CAS  Google Scholar 

  32. Juarez B H, Ibisate M, Palacios J M, and Lopez C, Adv Mater 15 (2003) 319.

    CAS  Google Scholar 

  33. Yabu H, Hirai Y, and Shimomura M, Langmuir 22 (2006) 9760.

    CAS  Google Scholar 

  34. J.E. Gray, and B. Luan, J Alloys Compd 336 (2002) 88.

    CAS  Google Scholar 

  35. Osaka T, Okinaka Y, Sasano J, and Kato M, Sci Technol Adv Mater 7 (2006) 425.

    CAS  Google Scholar 

  36. Guo K W, Recent Pat Corros Sci 2 (2010) 13.

    CAS  Google Scholar 

  37. Sahoo P, and Das S K, Mater Des 32 (2011) 1760.

    CAS  Google Scholar 

  38. Sudagar J, Lian J, and Sha W, J Alloys Compd (2013). http://dx.doi.org/10.1016/j.jallcom.2013.03.107.

  39. Shacham-Diamand Y, Osaka T, Okinaka Y, Sugiyama A, and Dubin V, Microelectron Eng 132 (2014) 35.

    Google Scholar 

  40. Olivera S, Muralidhara H B, Venkatesh K, Gopalakrishna K, and Vivek C S, J Mater Sci 51 (2016) 3657.

    CAS  Google Scholar 

  41. Loto C A, Silicon 8 (2016) 177.

    CAS  Google Scholar 

  42. Delaunois F, Petitjean J P, Lienard P, and Jacob-Duliere M, Surf Coat Technol 124 (2000) 201.

    CAS  Google Scholar 

  43. Ohno I, Wakabayashi O, and Haruyama S, J. Electrochem Soc 132 (1985) 2323.

    CAS  Google Scholar 

  44. Ashassi-Sorkhabi H, Dolati H, Parvini-Ahmadi N, and Manzoori J, Appl Surf Sci 185 (2002) 155.

    CAS  Google Scholar 

  45. Li Q, Yang X, Zhang L, Wang J, and Chen B, J Alloys Compd 482 (2009) 339.

    CAS  Google Scholar 

  46. Ashassi-Sorkhabi H, and Rafizadeh S H, Surf Coat Technol 176 (2004) 318.

    CAS  Google Scholar 

  47. Yan M, Ying H G, Ma T Y, and Luo W, Appl Surf Sci 255 (2008) 2176.

    CAS  Google Scholar 

  48. Tian J, Liu X, Wang J, Wang X, and Yin Y, Mater Chem Phys 124 (2010) 751.

    CAS  Google Scholar 

  49. Przyluski J, Kasprzak M, and BieliiSki J, Surf Coat Technol 31 (1987) 203.

    CAS  Google Scholar 

  50. Young J F, Gillard R D, and Wilkinson G, J Chem society 0 (1964) 5176.

    CAS  Google Scholar 

  51. Barker B D, Surf Technol 12 (1981) 77.

    Google Scholar 

  52. Lambert M R, and Duquette D J, Thin Solid Films 177 (1989) 207.

    CAS  Google Scholar 

  53. Keping H, and Li Fang J, Met Finish 1997.

  54. Kerr C, Barker D and Walsh F, Trans Inst Met Finish 79 (2001) 41.

    CAS  Google Scholar 

  55. Torres F, Rios D, Moreno C, Becerra V, and Elguezabal A, Int J Hydrogen Energy 37 (2012) 10743.

    Google Scholar 

  56. Low C T J, and Walsh F C, in Encyclopedia of Advanced Tribology (ed) Wang L, Springer, Berlin (2011).

    Google Scholar 

  57. Gu C, Lian J, Li G, Niu L, and Jiang G, J Alloys Compd 391 (2005) 104.

    CAS  Google Scholar 

  58. Liu Z, and Gao W, Surf Coat Technol 200 (2006) 3553.

    CAS  Google Scholar 

  59. Correa E, Zuleta A A, Guerra L, Gomez M A, Castano J G, Echeverria F, Liu H, Skeldon P, and Thompson G E, Wear 305 (2013) 115.

    CAS  Google Scholar 

  60. Zhang W X, Huang N, He J G, Jiang Z H, Jiang Q, and Lian J S, Appl Surf Sci 253 (2007) 5116.

    CAS  Google Scholar 

  61. Ezhilselvi V, Balaraju J N, and Subramanian S, Surf Coat Technol 325 (2017) 270.

    CAS  Google Scholar 

  62. Shun-Yi J, Jeou-Long L, Hung-Bin L, Hung-Hua S, Chang-Ying O, and Ming-Der G, J Taiwan Inst Chem Eng 68 (2016) 496.

    Google Scholar 

  63. Iranipour N, Azari Khosroshahi R, and Parvini Ahmadi N, Surf Coat Technol 205 (2010) 2281.

    CAS  Google Scholar 

  64. Kim D, Aoki K, and Takano O, J Electrochem Soc 142 (1995) 3763.

    CAS  Google Scholar 

  65. Zhang X, and Zhang J, RSC Adv 6 (2016) 30695.

    CAS  Google Scholar 

  66. Saxena V, Uma Rani R, and Sharma A K, Surf Coat Technol 201 (2006) 855.

    CAS  Google Scholar 

  67. Selvakumar A, Perumalraj R, Jeevananthan P N R, Archana S, and Sudagar J, Surf Eng 32 (2016) 338.

    CAS  Google Scholar 

  68. Nageswara Rao N B S, Jog R H, Badrinarayanan S, Mandale A B, and Sinha A P B, Surf Coat Technol 30 (1987) 137.

    Google Scholar 

  69. Lee D N, and Hur K, Scripta Materialia 4012 (1999) 1333.

    CAS  Google Scholar 

  70. Domínguez-Ríos C, Hurtado-Macias A, Torres-Sánchez R, Ramos M A, and González-Hernández J, Ind Eng Chem Res 51 (2012) 7762.

    Google Scholar 

  71. Mccormack J F, Polichette J, Schneble Jr W, Williamson J D, and Zebliskv R J, Metallization of Insulating Substrate, US Patent 3672986 (1972).

  72. Ritter G, McHugh P, Wilson G, and Ritzdorf T, Solid State Electron 44 (2000) 797.

    CAS  Google Scholar 

  73. Cunningham J A, Semicond. Int. 23 (2000) 97.

    CAS  Google Scholar 

  74. Wang F, Arai S, and Endo M, Electrochem Commun 6 (2004) 1042.

    CAS  Google Scholar 

  75. Byeon J H, and Kim J W, J Colloid Interface Sci 348 (2010) 649.

    CAS  Google Scholar 

  76. Touir R, Larhzil H, Ebn Touhami M, Cherkaoui M, and Chassaing E, J. Appl Electrochem 36 (2006) 69.

    CAS  Google Scholar 

  77. Guo R H, Jiang S Q, Yuen C W M, and Ng M C F, J. Mater Sci Mater Electron 20 (2008) 33.

    CAS  Google Scholar 

  78. Xueping G, Yating W, Lei L, Bin S H, and Wenbin H, J. Alloys Compd 455 (2008) 308.

    Google Scholar 

  79. Xueping G, Yating W, Lei L, Bin S H, and Wenbin H, Surf Coat Technol 201 (2007) 7018.

    Google Scholar 

  80. Afzali A, Mottaghitalab V, Motlagh M S, and Haghi A K, Korean J Chem Eng 27(4) (2010) 1145.

    CAS  Google Scholar 

  81. Zhao H, Huang Z, and Cui J, Microelectron Eng 85 (2008) 253.

    CAS  Google Scholar 

  82. Zhao H, Huang Z and Cuia J, J Mater Process Technol 203 (2008) 310.

    CAS  Google Scholar 

  83. Lantasova Y, Palmansa R, and Maexb K, Microelectron Eng 50 (2000) 441.

    Google Scholar 

  84. Patterson J C, Ni Dheasuna C, Barrett J, Spalding T R, OReilly M, Jiang X, and Crean G M, Appl Surf Sci 91 (1995) 124.

    CAS  Google Scholar 

  85. Kozlov A S, Thirumalai P, and Narasimhan D, Electroless Silver Plating, US Patent 6387542B1 (2002) 1.

  86. Nakanishi K, Kagaku no Ryoiki, 4 (1950) 604.

    CAS  Google Scholar 

  87. Liebig B, Ann Chem Phar XlV 140 (1835).

  88. Brevnov D A, Olson T S, Lopez G P, and Atanassov P, J Phys Chem B 108 (2004) 17531.

    CAS  Google Scholar 

  89. Shu J, Grandjean B P A, Ghali E, and Kaliaguine S, J Membr Sci 77 (1993) 181.

    CAS  Google Scholar 

  90. Xu X, Luo X, Zhuang H, Li W, and Zhang B, Mater Lett 57 (2003) 3987.

    CAS  Google Scholar 

  91. Hai H T, Ahn J G, Kim D J, Lee J R, Chung H S, and Kim C O, Surf Coat Technol 201 (2006) 3788.

    CAS  Google Scholar 

  92. Hasegawa K, Murakami K, Nakajima S, Takahashi A, and Yamamoto H, Electroless Gold plating solution and method for electroless gold plating, EP Patent 1338675 A1 (2003).

  93. Uyemura C & Co, Ltd, Electroless gold plating bath, EP0618307 A1 (1994).

  94. Lien W, Huang P, Shi-Chang T, Chia-Hsiang C, Shih-Ming L, and Wen-Chang L, Appl Surf Sci 258 (2012) 2246.

    CAS  Google Scholar 

  95. Li-Ming A, Andy Hor T S, Guo-Qin X, Chih-hang T, Zhao S, and Wang J L S, Chem Mater 11 (1999) 2115.

    Google Scholar 

  96. Yadav R, and Balasubramanian K, RSC Adv 5 (2015) 24990.

    CAS  Google Scholar 

  97. Lam P, Kumar K, Wnek G E, and Przybyciena T M, Electrochem Soc 146 (1999) 2517.

    CAS  Google Scholar 

  98. Pacheco Tanaka D A, Llosa Tanco M A, Niwa S, and Wakui Y, J Membr Sci 247 (2005) 21.

    CAS  Google Scholar 

  99. Fernandez M, Martinez-Duart J M, and Albella J M, J Phys. Chem Solids 46 (1985) 945.

    Google Scholar 

  100. Osaka T, Nagasaka H and Goto F, J Electrochem Soc 127 (1980) 2343.

    CAS  Google Scholar 

  101. Caturla F, Molina F, Molina-Sabio M, Rodríguez-Reinoso F, and Esteban A, J Electrochem Soc 142 (1995) 4084.

    CAS  Google Scholar 

  102. Zhang Q, Wu M, and Zhao W, Surf Coat Technol 192 (2005) 213.

    CAS  Google Scholar 

  103. You J B, Kim S Y, Park Y J, Ko Y G, and Gap Im S, Langmuir 30 (2014) 916.

    CAS  Google Scholar 

  104. Yoshiki H, Alexandruk V, Hashimoto K, and Fujishima A, J Electrochem Soc 141 (1994).

  105. Chatterjee B, surf technol 23 (1984) 333.

  106. Moon J H, Kim K H, Choi H W, Lee S W, and Park S J, Ultramicroscopy 108 (2008) 1307.

    CAS  Google Scholar 

  107. Xu C, Zhou R, Chen H, Hou X, Liu G, and Liu Y, J Mater Sci Mater Electron 25 (2014) 4638.

    CAS  Google Scholar 

  108. Li Q, Fan S, Han W, Sun C, and Liang W, Jpn J Appl Phys 36 (1997) 501.

    Google Scholar 

  109. Wang F, Arai S, and Endo M, Carbon 43 (2005) 1716.

    CAS  Google Scholar 

  110. Chi-Yuan H, and Jui-Fen P, Eur Polym J 34 (1998) 261.

    Google Scholar 

  111. Tzeng S-S, and Chang F-Y, Mater Sci Eng A302 (2001) 258.

    CAS  Google Scholar 

  112. Kar K K, and Sathiyamoorthy D, J Mater Process Technol 209 (2009) 3022.

    CAS  Google Scholar 

  113. Bazargan A M, Ghashghai S, Keyanpour-rad M, and Ganji M E, RSC Adv 2 (2012) 1842.

    CAS  Google Scholar 

  114. Hajjari E, Divandari M, and Mirhabibi A R, Iran J Mater Sci Eng 1 (2004) 43.

    CAS  Google Scholar 

  115. Kimura M, Yamagiwa H, Asakawa D, Noguchi M, Kurashina T, Fukawa T, and Shirai H, Appl Mater Interfaces 2 (2010) 3714.

    CAS  Google Scholar 

  116. Fatema U K, and Gotoh Y, Surf Coat Technol 206 (2012) 3472.

    CAS  Google Scholar 

  117. Arora R, Singh N, Balasubramanian K, and Alegaonkar P, RSC Adv 4 (2014) 50614.

    CAS  Google Scholar 

  118. Qing-hua H U, Xi-tang W, Hao C, and Zhou-fu W, New Carbon Materials 27 (2012) 35.

    Google Scholar 

  119. Jiang S Q, Kan C W, Yuen C W M, and Wong W K, J Appl Polym Sci 108 (2008) 2630.

    CAS  Google Scholar 

  120. Kim B C, Innis P C, Wallace G G, Low C T J, Walsh F C, Cho W J, and Yu K U, Prog Org Coat 76 (2013) 1296.

    CAS  Google Scholar 

  121. Ochanda F, and Jones W E, Langmuir 21 (2005) 10791.

    CAS  Google Scholar 

  122. Ochanda F, and Jones W E, Langmuir 23 (2007) 795.

    CAS  Google Scholar 

  123. Chiu Y-J, Chi M-H, Liu Y-H, and Chen J-T, Macromol Mater Eng (2016).

  124. Zhao C, and Wang J, Phys Status Solidi A 211 (2014) 2878.

    CAS  Google Scholar 

  125. Inagaki N, Tasaka S, Narushima K, and Mochizuki K, Macromol 32 (1999) 8566.

    CAS  Google Scholar 

  126. Feng Y, and Yuan H, J Mater Sci 39 (2004) 3241.

    CAS  Google Scholar 

  127. Oh Y, Suh D, Kim Y, Lee E, Mok J S, Choi J, and Baik S, Nanotechnology 19 (2008) 495602.

    Google Scholar 

  128. Zhao Y, Sun L, Xi M, Feng Q, Jiang C, and Fong H, Appl Mater Interfaces 6 (2014) 5759.

    CAS  Google Scholar 

  129. Ma X, Lun N, and Wen S, Diamond Relat Mater 14 (2005) 68.

    CAS  Google Scholar 

  130. Ma X, Li X, Lun N, and Wen S, Mater Chem Phys 97 (2006) 351.

    CAS  Google Scholar 

  131. Little B K, Li Y, Cammarata V, Broughton R, and Mills G, Appl Mater Interfaces 3 (2011) 1965.

    CAS  Google Scholar 

  132. Flavel B S, Yu J, Ellis A V, and Shapter J G, Electrochim Acta 54 (2009) 3191.

    CAS  Google Scholar 

  133. Shu J, Grandjean B P A, and Kaliaguine S, Ind Eng Chem Res 36 (1997) 1632.

    CAS  Google Scholar 

  134. Kerr C, and Walsh F C, Trans Inst Met Finish 79 (2001) 41.

    CAS  Google Scholar 

  135. Loos J S, and Ter Haar B A, Thin Solid Films 188 (1990) 247.

    CAS  Google Scholar 

  136. Ye Y, and Guo T, Appl Surf Sci, 264 (2013) 593.

    CAS  Google Scholar 

  137. Li Y, Liu Z, Jiang Y, Ben de Glee, Li D, and Zeng J, J Mater Sci 53 (2017) 479.

    Google Scholar 

  138. Liu D G, Mai Y J, Sun J, Luan Z J, Shi W C, Luo L M, Li H, and Wu Y C, Ceram Int 43 (2017) 13133.

    CAS  Google Scholar 

  139. Rohan J F, O’Riordan G, and Boardman J, Appl Surf Sci 185 (2002) 289.

    CAS  Google Scholar 

  140. Ranganatha S, Venkatesha T V, and Vathsala K, Ind Eng Chem Res 51 (2012) 7932.

    CAS  Google Scholar 

  141. Katza A, Redlich M, Rapoport L, Wagner H D, and Tennea R, Tribol Lett 21 (2006) 135.

    Google Scholar 

  142. Yang Y A, Wei Y B, Loo B H, and Yao J N, J Electroanal Chem 462 (1999) 259.

    CAS  Google Scholar 

  143. John S, Shanmugam N V, Srinivasan K N, Selvam M, and Shenoi B A, Surf Technol 20 (1983) 331.

    CAS  Google Scholar 

  144. Sharma A K, Suresh M R, Bhojraj H, Narayanamurthy H, and Sahu R P, Met Finish 96 (1998) 20.

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank Dr. Hina Gokhale, Vice Chancellor, Defence Institute of Advanced Technology (DU), Pune for the support. Authors also acknowledge Mr. Ramdayal, Prakash Gore, Ravi Magisetty and Ankit Malik for their continuous technical support during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balasubramanian Kandasubramanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharde, S., Kandasubramanian, B. The Importance of Electroless Metallic Build-Up on Surface Modified Substrates for Multifunctional Engineering Applications: A Recent Progress Update. Trans Indian Inst Met 71, 2873–2892 (2018). https://doi.org/10.1007/s12666-018-1397-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1397-6

Keywords

Navigation