Skip to main content
Log in

Mesoporous Li2FeSiO4/C nanocomposites with enhanced performance synthesized from fumed nano silica

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Mesoporous Li2FeSiO4/C nanocomposites (LFS-FNS and LFS-NS) were prepared from fumed nano silica (FNS) and nano silica (NS) through facile solid-state reactions, respectively. XRD analysis indicates that the crystalline structures of LFS-FNS and LFS-NS are indexed to monoclinic Li2FeSiO4 of P21. SEM results prove that the particle size of LFS-FNS and FNS (25~40 nm) is smaller than that of LFS-NS and NS, revealing the particle size of Li2FeSiO4/C nanocomposites can be tuned by choosing different silica. TEM further indicates Li2FeSiO4 nanoparticles are uniformly dispersed in the amorphous carbon networking of LFS-FNS. Pore structure analysis indicates the external surface areas of LFS-FNS as well as LFS-NS are 51.4 and 36.1 m2 g−1, indicating the pore properties of mesoporous Li2FeSiO4/C nanocomposites can be controlled by using different silica as silicon resource. The reduced particle size and high external surface area shorten the lithium-ion diffusion path and make LFS-FNS possess better electrochemical performance over LFS-NS. The discharge capacity of LFS-FNS is as high as 172 mA h g−1 at 0.1 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sun Y, Liu N, Cui Y (2016) Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nature Energy 1(7):16071–16082. https://doi.org/10.1038/nenergy.2016.71

    Article  CAS  Google Scholar 

  2. Zhang Q, Zhao Y, Su C, Li M (2011) Nano micro lithium transitionmetal (Fe Mn, Co and Ni) silicate cathode materials for lithium ion batteries. Recent Pat Nanothechnol 5(3):225–233. https://doi.org/10.2174/1872210511105030225

    Article  CAS  Google Scholar 

  3. Marom R, Amalraj SF, Leifer N, Jacob D, Aurbach D (2011) A review of advanced and practical lithium battery materials. J Mater Chem 21(27):9938–9954. https://doi.org/10.1039/c0jm04225k

    Article  CAS  Google Scholar 

  4. Zhang Q, Xie X, Fan W, Wang X (2016) Lithium polyacrylate-coated LiMn2O4 cathode materials with excellent performance for lithium ion batteries. Ionics 22(12):2273–2280. https://doi.org/10.1007/s11581-016-1766-2

    Article  CAS  Google Scholar 

  5. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29. https://doi.org/10.1038/nchem.2085

    Article  CAS  PubMed  Google Scholar 

  6. Ni J, Jiang Y, Bi X, Li L, Lu J (2017) Lithium iron orthosilicate cathode: progress and perspectives. ACS Energy Lett 2(8):1771–1781. https://doi.org/10.1021/acsenergylett.7b00452

    Article  CAS  Google Scholar 

  7. Masquelier C, Croguennec L (2013) Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem Rev 113(8):6552–6591. https://doi.org/10.1021/cr3001862

    Article  CAS  PubMed  Google Scholar 

  8. Ni J, Zhang L, Fu S, Savilov SV, Aldoshin SM, Lu L (2015) A review on integrating nano-carbons into polyanion phosphates and silicates for rechargeable lithium batteries. Carbon 92:15–25

    Article  CAS  Google Scholar 

  9. Yi L, Wang G, Bai Y, Liu M, Wang X, Liu M, Wang X (2017) The effects of morphology and size on performances of Li2FeSiO4/C cathode materials. J Alloys Compd 721:683–690. https://doi.org/10.1016/j.jallcom.2017.06.059

    Article  CAS  Google Scholar 

  10. Qu L, Fang SH, Yang L, Hirano SI (2012) Li2FeSiO4/C cathode material synthesized by template-assisted sol-gel process with Fe2O3 microsphere. J Power Sources 217:243–247. https://doi.org/10.1016/j.jpowsour.2012.05.093

    Article  CAS  Google Scholar 

  11. Yang J, Kang X, He D, Peng T, Hu L, Mu S (2013) Hierarchical shuttle-like Li2FeSiO4 as a highly efficient cathode material for lithium-ion batteries. J Power Sources 242:171–178. https://doi.org/10.1016/j.jpowsour.2013.05.088

    Article  CAS  Google Scholar 

  12. Wang X, Qing C, Zhang Q, Fan W, Huang X, Yang B, Cui J (2014) Facile synthesis and enhanced electrochemical performance of Li2FeSiO4/C/reduced graphene oxide nanocomposites. Electrochim Acta 134:371–376. https://doi.org/10.1016/j.electacta.2014.04.170

    Article  CAS  Google Scholar 

  13. Zhu H, Wu X, Zan L, Zhang Y (2014) Superior electrochemical capability of Li2FeSiO4/C/G composite as cathode material for Li-ion batteries. Electrochim Acta 117:34–40. https://doi.org/10.1016/j.electacta.2013.11.089

    Article  CAS  Google Scholar 

  14. Peng G, Zhang LL, Yang XL, Duan S, Liang G, Huang YH (2013) Enhanced electrochemical performance of multi-walled carbon nanotubes modified Li2FeSiO4/C cathode material for lithium-ion batteries. J Alloys Compd 570:1–6. https://doi.org/10.1016/j.jallcom.2013.03.136

    Article  CAS  Google Scholar 

  15. Chen Z, Qiu S, Cao Y, Qian J, Ai X, Xie K, Hong X, Yang H (2013) Hierarchical porous Li2FeSiO4/C composite with 2 Li storage capacity and long cycle stability for advanced Li-ion batteries. J Mater Chem A 1(16):4988–4992. https://doi.org/10.1039/c3ta00611e

    Article  CAS  Google Scholar 

  16. Devaraju MK, Tomai T, Honma I (2013) Supercritical hydrothermal synthesis of rod like Li2FeSiO4 particles for cathode application in lithium ion batteries. Electrochim Acta 109:75–81. https://doi.org/10.1016/j.electacta.2013.07.056

    Article  CAS  Google Scholar 

  17. Zhao Y, Li J, Wang N, Wu C, Ding Y, Guan L (2012) In situ generation of Li2FeSiO4 coating on MWNT as a high rate cathode material for lithium ion batteries. J Mater Chem 22(36):18797–18800. https://doi.org/10.1039/c2jm33855f

    Article  CAS  Google Scholar 

  18. Huang X, Li X, Wang H, Pan Z, Qu M, Yu Z (2010) Synthesis and electrochemical performance of Li2FeSiO4/carbon/carbon nano-tubes for lithium ion battery. Electrochim Acta 55(24):7362–7366. https://doi.org/10.1016/j.electacta.2010.07.036

    Article  CAS  Google Scholar 

  19. Zhang L, Ni J, Wang W, Guo J, Li L (2015) 3D porous hierarchical Li2FeSiO4/C for rechargeable lithium batteries. J Mater Chem A 3(22):11782–11786. https://doi.org/10.1039/C5TA02433A

    Article  CAS  Google Scholar 

  20. Qiu H, Zhu K, Li H, Li T, Zhang T, Yue H, Wei Y, Du F, Wang C, Chen G, Zhang D (2015) Mesoporous Li2FeSiO4@ordered mesoporous carbon composites cathode material for lithium-ion batteries. Carbon 87:365–373. https://doi.org/10.1016/j.carbon.2015.02.056

    Article  CAS  Google Scholar 

  21. Ding Z, Liu J, Ji R, Zeng X, Yang S, Pan A, Ivey DG, Wei W (2016) Three-dimensionally ordered macroporous Li2FeSiO4/C composite as a high performance cathode for advanced lithium ion batteries. J Power Sources 329:297–304. https://doi.org/10.1016/j.jpowsour.2016.08.091

    Article  CAS  Google Scholar 

  22. Zheng Z, Wang Y, Zhang A, Zhang T, Cheng F, Tao Z, Chen J (2012) Porous Li2FeSiO4/C nanocomposite as the cathode material of lithium-ion batteries. J Power Sources 198:229–235. https://doi.org/10.1016/j.jpowsour.2011.09.066

    Article  CAS  Google Scholar 

  23. Ren Y, Lu P, Huang X, Ding J, Wang H, Zhou S, Chen Y, Ding X (2016) Spherical Li1.95Na0.05FeSiO4/C composite as nanoporous cathode material exhibiting high rate capability. Mater Lett 173:207–210. https://doi.org/10.1016/j.matlet.2016.03.048

    Article  CAS  Google Scholar 

  24. Qu L, Luo D, Fang S, Liu Y, Yang L, Hirano S, Yang CC (2016) Mg-doped Li2FeSiO4/C as high-performance cathode material for lithium-ion battery. J Power Sources 307:69–76. https://doi.org/10.1016/j.jpowsour.2015.12.137

    Article  CAS  Google Scholar 

  25. Zhang S, Deng C, BL F, Yang SY, Ma L (2010) Doping effects of magnesium on the electrochemical performance of Li2FeSiO4 for lithium ion batteries. J Electroanal Chem 644(2):150–154. https://doi.org/10.1016/j.jelechem.2009.11.035

    Article  CAS  Google Scholar 

  26. Qiu H, Yue H, Zhang T, Ju Y, Zhang Y, Guo Z, Wang C, Chen G, Wei Y, Zhang D (2016) Enhanced electrochemical performance of Li2FeSiO4/C positive electrodes for lithium-ion batteries via yttrium doping. Electrochim Acta 188:636–644. https://doi.org/10.1016/j.electacta.2015.12.042

    Article  CAS  Google Scholar 

  27. Deng C, Zhang S, Yang SY, BL F, Ma L (2011) Synthesis and characterization of Li2Fe0.97M0.03SiO4 (M=Zn2+, Cu2+, Ni2+) cathode materials for lithium ion batteries. J Power Sources 196(1):386–392. https://doi.org/10.1016/j.jpowsour.2010.06.064

    Article  CAS  Google Scholar 

  28. Guo HJ, Cao X, Li XQ, Li LM, Li XH, Wang ZX, Peng W, Li Q (2010) Optimum synthesis of Li2Fe1-xMnxSiO4/C cathode for lithium ion batteries. Electrochim Acta 55(27):8036–8042. https://doi.org/10.1016/j.electacta.2010.03.001

    Article  CAS  Google Scholar 

  29. Yi L, Wang X, Wang G, Bai Y, Liu M, Wang X, Yu R (2016) Improved electrochemical performance of spherical Li2FeSiO4/C cathode materials via Mn doping for lithium-ion batteries. Electrochim Acta 222:1354–1364. https://doi.org/10.1016/j.electacta.2016.11.111

    Article  CAS  Google Scholar 

  30. Zhang LL, Duan S, Yang XL, Liang G, Huang YH, Cao XZ, Yang J, Li M, Croft MC, Lewis C (2015) Insight into cobalt-doping in Li2FeSiO4 cathode material for lithium-ion battery. J Power Sources 274:194–202. https://doi.org/10.1016/j.jpowsour.2014.10.048

    Article  CAS  Google Scholar 

  31. Liu Q, Yu L, Wang H (2009) Preparation of LiMn2O4 with an enhanced performance by mixed liquid and mechanical activations. J Alloys Compd 486(1-2):886–889. https://doi.org/10.1016/j.jallcom.2009.07.087

    Article  CAS  Google Scholar 

  32. Cui J, Qing C, Zhang Q, Su C, Wang X, Yang B, Huang X (2014) Effect of the particle size on the electrochemical performance of nano-Li2FeSiO4/C composites. Ionics 20(1):23–28. https://doi.org/10.1007/s11581-013-0965-3

    Article  CAS  Google Scholar 

  33. Zuo P, Wang T, Cheng G, Cheng X, Du C, Yin G (2012) Effects of carbon on the structure and electrochemical performance of Li2FeSiO4 cathode materials for lithium-ion batteries. RSC Adv 2(17):6994–6998. https://doi.org/10.1039/c2ra20552a

    Article  CAS  Google Scholar 

  34. Chen W, Lan M, Zhu D, Wang C, Xue S, Yang C, Li Z, Zhang J, Mi L (2013) Synthesis, characterization and electrochemical performance of Li2FeSiO4/C for lithium-ion batteries. RSC Adv 3(2):408–412. https://doi.org/10.1039/C2RA21875E

    Article  CAS  Google Scholar 

  35. Muraliganth T, Stroukoff KR, Manthiram A (2010) Micro-wave-solvothermal synthesis of nanostructured Li2MSiO4/C (M = Mn and Fe) cathodes for lithium-ion batteries. Chem Mater 22(20):5754–5761. https://doi.org/10.1021/cm102058n

    Article  CAS  Google Scholar 

  36. Jiang Y, Yang Z, Li W, Zeng L, Pan F, Wang M, Wei X, Hu G, Gu L, Yu Y (2015) Nanoconfined carbon-coated Na3V2(PO4)3 particles in mesoporous carbon enabling ultralong cycle life for sodium-ion batteries. Adv Energy Mater 5(10):1402104. https://doi.org/10.1002/aenm.201402104

    Article  CAS  Google Scholar 

  37. Wang W, Liang H, Zhang L, Savilov SV, Ni J, Li L (2017) Carbon nanotube directed three-dimensional porous Li2FeSiO4 composite for lithium batteries. Nano Res 10(1):229–237. https://doi.org/10.1007/s12274-016-1280-x

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Gansu Provincial Science Fund (1606RJZA180) and the National Nature Science Foundation of China (No. 21466020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Yan, C., Guo, J. et al. Mesoporous Li2FeSiO4/C nanocomposites with enhanced performance synthesized from fumed nano silica. Ionics 24, 2555–2563 (2018). https://doi.org/10.1007/s11581-017-2399-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2399-9

Keywords

Navigation