Skip to main content
Log in

Carbon nanotube directed three-dimensional porous Li2FeSiO4 composite for lithium batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium iron silicate (Li2FeSiO4) is capable of affording a much higher capacity than conventional cathodes, and thus, it shows great promise for high-energy battery applications. However, its capacity has often been adversely affected by poor reaction activity due to the extremely low electronic and ionic conductivity of silicates. Here, we for the first time report on a rational engineering strategy towards a highly active Li2FeSiO4 by designing a carbon nanotube (CNT) directed three-dimensional (3D) porous Li2FeSiO4 composite. As the CNT framework enables rapid electron transport, and the rich pores allow efficient electrolyte penetration, this unique 3D Li2FeSiO4-CNT composite exhibits a high capacity of 214 mAh·g−1 and retains 96% of this value over 40 cycles, thus, outstripping many previously reported Li2FeSiO4-based materials. Kinetic analysis reveals a high Li+ diffusivity due to coupling of the migration of electrons and ions. This research highlights the potential for engineering 3D porous structure to construct highly efficient electrodes for battery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mai, L. Q.; Tian, X. C.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 2014, 114, 11828–11862.

    Article  Google Scholar 

  2. Whittingham, M. S. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 2014, 114, 11414–11443.

    Article  Google Scholar 

  3. Nyten, A.; Abouimrane, A.; Armand, M.; Gustafsson, T.; Thomas, J. O. Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem. Commun. 2005, 7, 156–160.

    Article  Google Scholar 

  4. Islam, M. S.; Dominko, R.; Masquelier, C.; Sirisopanaporn, C.; Armstrong, A. R.; Bruce, P. G. Silicate cathodes for lithium batteries: Alternatives to phosphates? J. Mater. Chem. 2011, 21, 9811–9818.

    Article  Google Scholar 

  5. Sirisopanaporn, C.; Dominko, R.; Masquelier, C.; Armstrong, A. R.; Mali, G.; Bruce, P. G. Polymorphism in Li2(Fe, Mn)SiO4: A combined diffraction and NMR study. J. Mater. Chem. 2011, 21, 17823–17831.

    Article  Google Scholar 

  6. Dominko, R. Li2MSiO4 (M = Fe and/or Mn) cathode materials. J. Power Sources 2008, 184, 462–468.

    Article  Google Scholar 

  7. Armstrong, A. R.; Kuganathan, N.; Islam, M. S.; Bruce, P. G. Structure and lithium transport pathways in Li2FeSiO4 cathodes for lithium batteries. J. Am. Chem. Soc. 2011, 133, 13031–13035.

    Article  Google Scholar 

  8. Lv, D. P.; Wen, W.; Huang, X. K.; Bai, J. Y.; Mi, J. X.; Wu, S. Q.; Yang, Y. A novel Li2FeSiO4/C composite: Synthesis, characterization and high storage capacity. J. Mater. Chem. 2011, 21, 9506–9512.

    Article  Google Scholar 

  9. Zhang, L.-L.; Duan, S.; Yang, X.-L.; Peng, G.; Liang, G.; Huang, Y.-H.; Jiang, Y.; Ni, S.-B.; Li, M. Reduced graphene oxide modified Li2FeSiO4/C composite with enhanced electrochemical performance as cathode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 12304–12309.

    Article  Google Scholar 

  10. Li, Y. S.; Cheng, X.; Zhang, Y. Achieving high capacity by vanadium substitution into Li2FeSiO4. J. Electrochem. Soc. 2012, 159, A69–A74.

    Article  Google Scholar 

  11. Armand, M.; Arroyo y de Dompablo, M. E. Benefits of N for O substitution in polyoxoanionic electrode materials: A first principles investigation of the electrochemical properties of Li2FeSiO4−y Ny (y = 0, 0.5, 1). J. Mater. Chem. 2011, 21, 10026–10034.

    Article  Google Scholar 

  12. Gao, H. Y.; Hu, Z.; Zhang, K.; Cheng, F. Y.; Chen, J. Intergrown Li2FeSiO4·LiFePO4-C nanocomposites as high-capacity cathode materials for lithium-ion batteries. Chem. Commun. 2013, 49, 3040–3042.

    Article  Google Scholar 

  13. Rangappa, D.; Murukanahally, K. D.; Tomai, T.; Unemoto, A.; Honma, I. Ultrathin nanosheets of Li2MSiO4 (M = Fe, Mn) as high-capacity Li-ion battery electrode. Nano Lett. 2012, 12, 1146–1151.

    Article  Google Scholar 

  14. Chen, Z. X.; Qiu, S.; Cao, Y. L.; Qian, J. F.; Ai, X. P.; Xie, K.; Hong, X. B.; Yang, H. X. Hierarchical porous Li2FeSiO4/C composite with 2 Li storage capacity and long cycle stability for advanced Li-ion batteries. J. Mater. Chem. A 2013, 1, 4988–4992.

    Article  Google Scholar 

  15. Zheng, Z. M.; Wang, Y.; Zhang, A.; Zhang, T. R.; Cheng, F. Y.; Tao, Z. L.; Chen, J. Porous Li2FeSiO4/C nanocomposite as the cathode material of lithium-ion batteries. J. Power Sources 2012, 198, 229–235.

    Article  Google Scholar 

  16. Li, D. L.; Xie, R.; Tian, M.; Ma, S. L.; Gou, L.; Fan, X. Y.; Shi, Y. X.; Yong, H.-T.-H.; Hao, L. M. Improving high-rate performance of mesoporous Li2FeSiO4/Fe7SiO10/C nanocomposite cathode with a mixed valence Fe7SiO10 nanocrystal. J. Mater. Chem. A 2014, 2, 4375–4383.

    Article  Google Scholar 

  17. Xu, Y. M.; Shen, W.; Zhang, A. L.; Liu, H. M.; Ma, Z. F. Template-free hydrothermal synthesis of Li2FeSiO4 hollow spheres as cathode materials for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 12982–12990.

    Article  Google Scholar 

  18. Zhang, L.; Ni, J. F.; Wang, W. C.; Guo, J.; Li, L. 3D porous hierarchical Li2FeSiO4/C for rechargeable lithium batteries. J. Mater. Chem. A 2015, 3, 11782–11786.

    Article  Google Scholar 

  19. Zhang, C. F.; Chen, Z. X.; Guo, Z. P.; Lou, X. W. Additive-free synthesis of 3D porous V2O5 hierarchical microspheres with enhanced lithium storage properties. Energy Environ. Sci. 2013, 6, 974–978.

    Article  Google Scholar 

  20. Chu, H. B.; Wei, L.; Cui, R. L.; Wang, J. Y.; Li, Y. Carbon nanotubes combined with inorganic nanomaterials: Preparations and applications. Coord. Chem. Rev. 2010, 254, 1117–1134.

    Article  Google Scholar 

  21. Wang, H. L.; Yang, Y.; Liang, Y. Y.; Cui, L. F.; Sanchez Casalongue, H.; Li, Y. G.; Hong, G. S.; Cui, Y.; Dai, H. J. LiMn1−x FexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angew. Chem. 2011, 123, 7502–7506.

    Article  Google Scholar 

  22. Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Dai, H. J. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J. Am. Chem. Soc. 2013, 135, 2013–2036.

    Article  Google Scholar 

  23. Wang, H. L.; Dai, H. J. Strongly coupled inorganic-nanocarbon hybrid materials for energy storage. Chem. Soc. Rev. 2013, 42, 3088–3113.

    Article  Google Scholar 

  24. Li, P.; Wang, L. Y.; Wang, L.; Li, Y. D. Controlled synthesis and luminescence of semiconductor nanorods. Chem.-Eur. J. 2008, 14, 5951–5956.

    Article  Google Scholar 

  25. Lin, F.-H.; Chen, W.; Liao, Y.-H.; Doong, R.-A.; Li, Y. D. Effective approach for the synthesis of monodisperse magnetic nanocrystals and M-Fe3O4 (M = Ag, Au, Pt, Pd) heterostructures. Nano Res. 2011, 4, 1223–1232.

    Article  Google Scholar 

  26. Zhang, L.; Ni, J. F.; Wang, W. C.; Li, L. A general approach towards carbon nanotube and iron oxide coaxial architecture and its lithium storage capability. J. Power Sources 2015, 298, 138–143.

    Article  Google Scholar 

  27. Dominko, R.; Conte, D. E.; Hanzel, D.; Gaberscek, M.; Jamnik, J. Impact of synthesis conditions on the structure and performance of Li2FeSiO4. J. Power Sources 2008, 178, 842–847.

    Article  Google Scholar 

  28. Zhang, P.; Zheng, Y.; Yu, S.; Wu, S. Q.; Wen, Y. H.; Zhu, Z. Z.; Yang, Y. Insights into electrochemical performance of Li2FeSiO4 from first-principles calculations. Electrochim. Acta 2013, 111, 172–178.

    Article  Google Scholar 

  29. Masese, T.; Orikasa, Y.; Tassel, C.; Kim, J.; Minato, T.; Arai, H.; Mori, T.; Yamamoto, K.; Kobayashi, Y.; Kageyama, H. et al. Relationship between phase transition involving cationic exchange and charge-discharge rate in Li2FeSiO4. Chem. Mater. 2014, 26, 1380–1384.

    Article  Google Scholar 

  30. Jiang, Y.; Tian, R. Y.; Liu, H. Q.; Chen, J. K.; Tan, X. H.; Zhang, L.; Liu, G. Y.; Wang, H. F.; Sun, L. F.; Chu, W. G. Synthesis and characterization of oriented linked LiFePO4 nanoparticles with fast electron and ion transport for highpower lithium-ion batteries. Nano Res. 2015, 8, 3803–3814.

    Article  Google Scholar 

  31. Ni, J. F.; Zhao, Y.; Li, L.; Mai, L. Q. Ultrathin MoO2 nanosheets for superior lithium storage. Nano Energy 2015, 11, 129–135.

    Article  Google Scholar 

  32. Su, D. W.; Ahn, H.; Wang, G. X. Ab initio calculations on Li-ion migration in Li2FeSiO4 cathode material with a P21 symmetry structure. Appl. Phys. Lett. 2011, 99, 141909.

    Article  Google Scholar 

  33. Hu, L.; Yang, J. L.; Amiinu, I. S.; Kang, X. C.; Zhang, W.; Mu, S. C. Lithium storage properties of in situ synthesized Li2FeSiO4 and LiFeBO3 nanocomposites as advanced cathode materials for lithium ion batteries. J. Mater. Chem. A 2015, 3, 23368–23375.

    Article  Google Scholar 

  34. Qiu, H. L.; Yue, H. J.; Zhang, T.; Ju, Y. M.; Zhang, Y. Q.; Guo, Z. D.; Wang, C. Z.; Chen, G.; Wei, Y. J.; Zhang, D. Enhanced electrochemical performance of Li2FeSiO4/C positive electrodes for lithium-ion batteries via yttrium doping. Electrochim. Acta 2016, 188, 636–644.

    Article  Google Scholar 

  35. O’Neill, D.; Bowman, R. M.; Gregg, J. M. Dielectric enhancement and Maxwell-Wagner effects in ferroelectric superlattice structures. Appl. Phys. Lett. 2000, 77, 1520–1522.

    Article  Google Scholar 

  36. Joy, L. K.; Sooraj, V.; Sajeev, U.; Nair, S. S.; Narayanan, T. N.; Sethulakshmi, N.; Ajayan, P. M.; Anantharaman, M. R. Large enhanced dielectric permittivity in polyaniline passivated core-shell nano magnetic iron oxide by plasma polymerization. Appl. Phys. Lett. 2014, 104, 121–603.

    Article  Google Scholar 

  37. Liu, H.; Li, C.; Zhang, H. P.; Fu, L. J.; Wu, Y. P.; Wu, H. Q. Kinetic study on LiFePO4/C nanocomposites synthesized by solid state technique. J. Power Sources 2006, 159, 717–720.

    Article  Google Scholar 

  38. Ni, J. F.; Fu, S. D.; Wu, C.; Maier, J.; Yu, Y.; Li, L. Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage. Adv. Mater. 2016, 28, 2259–2265.

    Article  Google Scholar 

  39. Ni, J. F.; Fu, S. D.; Wu, C.; Zhao, Y.; Maier, J.; Yu, Y.; Li, L. Superior sodium storage in Na2Ti3O7 nanotube arrays through surface engineering. Adv. Energy Mater. 2016, 6, 1502568.

    Article  Google Scholar 

  40. Ni, J. F.; Zhao, Y.; Liu, T. T.; Zheng, H. H.; Gao, L. J.; Yan, C. L.; Li, L. Strongly coupled Bi2S3@CNT hybrids for robust lithium storage. Adv. Energy Mater. 2014, 4, 1400798.

    Article  Google Scholar 

  41. Ni, J. F.; Li, Y. Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv. Energy Mater. 2016, 6, 1600278.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support of the National Natural Science Foundation of China (Nos. 51302181, 51372159, 51422206, and 51672182), the Thousand Youth Talents Plan, the Jiangsu Shuangchuang Plan, the Natural Science Foundation of Jiangsu Province (Nos. BK20151219 and BK20140009), the Jiangsu Undergraduate Student Innovation and Entrepreneurship Project, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Russian Scientific Fund (No. 14-43-00072).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiangfeng Ni or Liang Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Liang, H., Zhang, L. et al. Carbon nanotube directed three-dimensional porous Li2FeSiO4 composite for lithium batteries. Nano Res. 10, 229–237 (2017). https://doi.org/10.1007/s12274-016-1280-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1280-x

Keywords

Navigation