Skip to main content
Log in

Structural and electrochemical investigation on Ga3+ doped Pr1.3Sr0.7Ni0.7Cu0.3O4 + δ cathodes for IT-SOFC applications

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The Pr1.3Sr0.7Ni(0.7 − x)Ga x Cu0.3O4 + δ (x = 0.0, 0.02, 0.05, and 0.1) oxides with tetragonal K2NiF4-type crystal structure with I/4mmm symmetry are obtained by sintering sol–gel-derived stoichiometric powders at 1000 °C for 6 h. X-ray powder diffraction, transmission electron microscopy, and infrared spectroscopy studies confirm the formation of single-phase solid solutions. The Ga3+ co-doping decreases dc electrical conductivity due to reduction in mobile charge carrier concentration. The symmetrical cells with the configurations Pr1.3Sr0.7Ni0.7 − x Ga x Cu0.3O4 + δ /GDC/Pr1.3Sr0.7Ni0.7 − x Ga x Cu0.3O4 + δ prepared by screen printing are characterized using scanning electron microscopy and complex impedance spectroscopy. The lowest electrode polarization resistance (R p = 0.202(3) Ω cm2 at 700 °C) and minimum activation energy (E a = 1.325(4) eV) observed at x = 0.05 are attributed to an increase in bulk oxygen ion diffusion. The non-charge transfer adsorption/desorption of oxygen on the cathode (O2 , abs ⇔ 2Oabs) and O2− diffusion are coexisting major steps of the oxygen reduction reaction (ORR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Singhal SC, Kendall K (2003) High-temperature solid oxide fuel cells: fundamentals, design and applications. Elsevier, Netherlands

  2. Zhao ZL, Shen W, Zhu ZM, Li X, Wang ZF (2008) Preparation and properties of Ba x Sr1−x Co y Fe1−y O3−δ cathode material for intermediate temperature solid oxide fuel cells. J Power Sources 182(2):503–509

    Article  CAS  Google Scholar 

  3. Skinner SJ, Kilner JA (2000) Oxygen diffusion and surface exchange in La2−x Sr x NiO4+δ . Solid State Ionics 135:709–712

    Article  CAS  Google Scholar 

  4. Ishihara T, Sirikanda N, Nakashima K, Miyoshi S, Matsumoto H (2010) Mixed oxide ion and hole conductivity in Pr2Ni0.76−x Cu0.24Ga x O4+δ membrane. J Electrochem Soc 157(1):B141–B146

    Article  CAS  Google Scholar 

  5. Dailly J, Fouread S, Largeteau A, Mauvy F, Grenier JC, Marrony M (2010) Perovskite and A2MO4-type oxides as new cathode materials for protonic solid oxide fuel cells. Electrochim Acta 55:5847–5857

    Article  CAS  Google Scholar 

  6. Ferchaud C, Grenier JC, Steenwinkel YZ, van Tuel MMA, van Berkel FPF, Bassat JM (2011) High performance praseodymium nickelate oxide cathode for low temperature solid oxide fuel cell. J Power Sources 196:1872–1879

    Article  CAS  Google Scholar 

  7. Kovalevky AV, Kharton VV, Yarmchenko AA, Pivak VV, Naumovich EN, Frade JR (2007) Stability and oxygen transport properties of Pr2NiO4+δ ceramics. J Eur Ceram Soc 27:4269–4272

    Article  Google Scholar 

  8. Zho DC, Xu XY, Feng SJ, Liu W, Chen CS (2003) La2NiO4 tubular membrane reactor for conversion of methane to syngas. Catal Today 82:151–156

    Article  Google Scholar 

  9. Miyoshi S, Furuno T, Matsumoto H, Ishihara T (2006) Conductivity and oxygen permeability of a novel oxide Pr2Ni0.8−xCu0.2FexO4 and its application to partial oxidation of CH4. Solid State Ionics 177:2269–2273

    Article  CAS  Google Scholar 

  10. Yang J, Cheng J, Jiang Q, Wang Y, Wang R, Gao J (2012) Preparation and electrochemical properties of strontium doped Pr2NiO4 cathode materials for intermediate-temperature solid oxide fuel cells. Int J Hydrog Energy 37:1746–1751

    Article  CAS  Google Scholar 

  11. Bhoga SS, Khandale AP, Pahune BS (2014) Investigation on Pr2-xSrxNiO4 (x = 0.3-1.0) cathode materials for intermediate temperature solid oxide fuel cell. Solid State Ionics 262:340–344

    Article  CAS  Google Scholar 

  12. Nomura T, Nishimoto S, Kameshima Y, Miyake M (2012) Electrode properties of doped Pr2NiO4-based oxide cathode for intermediate-temperature SOFCs. J Ceram Soc Japan 120(11):534–538

    Article  CAS  Google Scholar 

  13. Hyodo J, Tominaga K, Ju YW, Ida S, Ishihara T (2014) Electrical conductivity and oxygen diffusivity in Cu- and Ga-doped Pr2NiO4. Solid State Ionics 256:5–10

    Article  CAS  Google Scholar 

  14. Ishihara T, Sirikanda N, Nakashima K, Miyoshi S, Matsumoto H (2010) Mixed oxide ion and hole conductivity in Pr2−α Ni0.76−x Cu0.24Ga x O4+δ membrane. J Electrochem Soc 157(1):B141–B146

    Article  CAS  Google Scholar 

  15. Yashima M, Sirikanda N, Ishihara T (2010) Crystal structure, diffusion path, and oxygen permeability of a Pr2NiO4-based mixed conductor (Pr0.9La0.1)2 (Ni0.74Cu0.21Ga0.05)O4+δ . J Am Chem Soc 132:2385–2392

    Article  CAS  Google Scholar 

  16. Khandale AP, Bhoga SS (2012) Study of Nd2-xCexCuO4 (x = 0.1-0.25) as cathode material for intermediate-temperature solid oxide fuel cells. J Solid State Electrochem 16:341–352

    Article  CAS  Google Scholar 

  17. Jung J, Misture ST, Edwards DD (2010) Oxygen stoichiometry, electrical conductivity, and thermopower measurements of BSCF (Ba0.5Sr0.5Co x Fe1−x O3−δ , 0 ≤ x ≤ 0.8) in air. Solid State Ionics 181:1287–1293

    Article  CAS  Google Scholar 

  18. Chen SC, Ramanujachary KV, Greenblatt M (1993) Investigations on the structural, electrical and magnetic properties of Sr substituted Ln2NiO4 (Ln = Pr, Sm, Gd). J Solid State Chemistry 105:444–457

    Article  CAS  Google Scholar 

  19. Yashima M, Yamada H, Nuansaeng S, Ishihara T (2012) Role of Ga3+ and Cu2+ in the high interstitial oxide-ion diffusivity of Pr2NiO4-based oxides: design concept of interstitial ion conductors through the higher-valence d10 dopant and Jahn − Teller effect. Chem Mater 24:4100–4113

    Article  CAS  Google Scholar 

  20. Goldschmidt VM (1926) Geochemical laws of distribution of the elements. Acad Oslo I Mat Nature 2:112–117

    Google Scholar 

  21. Singh KK, Ganguly P, Goodenough JB (1984) Unusual effects of anisotropic bonding in Cu(II) and Ni(II) oxides with K2NiF4 structure. J Solid State Chem 52:254–273

    Article  CAS  Google Scholar 

  22. Vashook VV, Yushkevich I, Kokhanovsky LV, Makhnach LV, Tolochko SP, Kononyuk IF, Ullmann H, Altenburg H (1999) Composition and conductivity of some nickelates. Solid State Ionics 119:23–30

    Article  CAS  Google Scholar 

  23. Li Q, Fan Y, Zhao H, Sun LP, Huo LH (2007) Preparation and electrochemical properties of composite cathode La1.6Sr0.4NiO4-Ce0.9Gd0.1O1.9 for ITSOFC. Chinese J Inorg Chem 23:300–304

    CAS  Google Scholar 

  24. Chaker H, Roisnel T, Potel M, Hassen RB (2004) Structural and electrical changes in NdSrNiO4-δ by substitute nickel with copper. J Solid State Chem 177:4067–4072

    Article  CAS  Google Scholar 

  25. Khandale AP, Bansod MG, Bhoga SS (2015) Improved electrical and electrochemical performance of co-doped Nd1.8Sr0.2Ni1-xCuxO4+δ. Solid State Ionics 276:127–135

    Article  CAS  Google Scholar 

  26. Vashook V, Girdauskaite E, Zosel J, Wen TL, Ullmann H, Guth U (2006) Oxygen non-stoichiometry and electrical conductivity of Pr2−xSrxNiO4±δ with x = 0–0.5. Solid State Ionics 177:1163–1171

    Article  CAS  Google Scholar 

  27. Xue J, Schulz A, Wang H, Feldhoff H (2016) The phase stability of the Ruddlesden-popper type oxide (Pr0.9La0.1)2.0Ni0.74Cu0.21Ga0.05O4+δ in an oxidizing environment. J Membr Sci 497:357–364

    Article  CAS  Google Scholar 

  28. Tokura Y, Takagi H, Uchida S (1989) A superconducting copper oxide compound with electrons as the charge carriers. Nature 337:345–347

    Article  CAS  Google Scholar 

  29. Lou H, Ge Y, Chen P, Mei M, Ma F, Lu G (1997) Preparation, crystal structure, and reducibility of K2NiF4 type oxides Sm2–xSrxNiO4+δ. J Mat Chem 7:2097–2101

    Article  CAS  Google Scholar 

  30. Mauvy F, Bassat JM, Boehm E, Manaud JP, Dordor P, Grenier JC (2003) Oxygen electrode reaction on Nd2NiO4+δ cathode materials: impedance spectroscopy study. Solid State Ionics 158:17–28

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to University Grants Commission (UGC), New Delhi (India), for financial assistance through project F. no. 42-7615/2013 (SR) to carry out this work. Mr. M. G. Bansod is thankful to UGC, New Delhi (India), for the award of Rajiv Gandhi National Fellowship (F1-17.1/2016-17/RGNF-2015-17-SC-MAH-426/(SAIII/Website)). Also, the authors are thankful to SAIF, IIT Bombay (India), for providing FEG-SEM and FEG-TEM facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Khandale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansod, M., Khandale, A.P. & Bhoga, S.S. Structural and electrochemical investigation on Ga3+ doped Pr1.3Sr0.7Ni0.7Cu0.3O4 + δ cathodes for IT-SOFC applications. Ionics 23, 2561–2570 (2017). https://doi.org/10.1007/s11581-017-1998-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-1998-9

Keywords

Navigation