Skip to main content

Advertisement

Log in

Structural, electrical conductivity, and transport analysis of PAN–NH4Cl polymer electrolyte system

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Poly (acrylonitrile) (PAN) and ammonium chloride (NH4Cl)-based proton conducting polymer electrolytes with different compositions have been prepared by solution casting technique. The amorphous nature of the polymer electrolytes has been confirmed by XRD analysis. The FTIR analysis confirms the complex formation of the host polymer (PAN) with the salt (NH4Cl). DSC measurements show a decrease in Tg with the increase in salt concentration. The conductivity analysis shows that the 25 mol% ammonium chloride doped polymer electrolyte has a maximum ionic conductivity, and it has been found to be 6.4 × 10−3 Scm−1, at room temperature. The temperature dependence of conductivity of the polymer electrolyte complexes appears to obey the Arrhenius nature. The activation energy (Ea = 0.23 eV) has been found to be low for 25 mol% salt doped polymer electrolyte. The dielectric behavior has been analyzed using dielectric permittivity (ε*), and the relaxation frequency (τ) has been calculated from the loss tangent spectra (tan δ). Using this maximum ionic conducting polymer electrolyte, the primary proton conducting battery with configuration Zn + ZnSO4·7H2O/75 PAN:25 NH4Cl/PbO2 + V2O5 has been fabricated and their discharge characteristics have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bozkurt A (2002) Turk J Chem 26:663–668

    CAS  Google Scholar 

  2. Qiao J, Hamaya T, Okada T (2005) Polymer 46:10809–10816

    Article  CAS  Google Scholar 

  3. Wieczorek W, Florjanczyk Z, Zukowska G, Borkowska R, Kuźma P, ZygadloMonikowska E, Kuźwa K (2002) Solid State Ionics 154–155:45–49

    Article  Google Scholar 

  4. Lewandowski A, Zajder M, Frackowiak E, Beguin F (2001) Electrochim Acta 46:2777–2780

    Article  CAS  Google Scholar 

  5. Ningping C, Liang H (2002) Solid State Ionics 146:377–385

    Article  Google Scholar 

  6. Selvasekarapandian S, Baskaran R, Hema M (2005) Physica B 357:412–419

    Article  CAS  Google Scholar 

  7. Baskaran R, Selvasekarapandian S, Kuwata N, Kawamura J, Hattori T (2006) Solid State Ionics 177:2679–2682

    Article  CAS  Google Scholar 

  8. Choi N-S, Lee Y-G, Jung-Ki P, Yang-Myoun K (2001) Elactrochim Acta 46:1581–1586

    Article  CAS  Google Scholar 

  9. Croce F, Persi L, Scrosati B, Serraino-Fiory F, Plichta E, HendRickson MA (2001) Eletrochim Acta 46:2457–2461

    Article  CAS  Google Scholar 

  10. Baskaran R, Selvasekarapandian S, Kuwata N, Iwai Y, Kawamura J, Hattori T (2006) Mater Chem Phys 98:55–61

    Article  CAS  Google Scholar 

  11. Agarwal SL, Rai N, Natarajan TS, Chand N (2012) Ionics 19(1):145–154

    Article  Google Scholar 

  12. Ramesh S, Winie T, Arof AK (2007) European Polymer Journal 43(5):1963–1968

    Article  CAS  Google Scholar 

  13. Dobrowska AW, Wieczorek W (1994) Mater Sci Eng B 22:107–116

    Article  Google Scholar 

  14. Rikukawa M, Sanui K (2000) Prog Polym Sci 25:1463–1502

    Article  CAS  Google Scholar 

  15. Qiao J, Okada T (2007) J New Mater Electrochem Syst 10:231–236

    CAS  Google Scholar 

  16. Gao H, Lian K (2010) Electrochim Acta 56:122–127

    Article  CAS  Google Scholar 

  17. Li L, Xu L, Wang Y (2003) Mater Lett 57(8):1406–1410

    Article  CAS  Google Scholar 

  18. Song JY, Wang YY, Wan CC (1999) J Power Sources 77:183–197

    Article  CAS  Google Scholar 

  19. Arof AK, Suhaimi NEA, Amiruddin S, Kufian MZ, Woo HJ, MA C (2014) Polym Adv Technol 25:265–272

    Article  CAS  Google Scholar 

  20. Kufian MZ, Arof AK (2014) Mater Technol 29:114–117

    Article  Google Scholar 

  21. Arof AK, Jun HK, Sim LN, Kufian MZ, Sahraoui B (2013) Opt Mater 36:135–139

    Article  CAS  Google Scholar 

  22. Yoon HK, Chung WS, Jo NJ (2004) Electrochim Acta 50:289–293

    Article  CAS  Google Scholar 

  23. Lewandowski A, Galinskin M, Krzyzanowski M (2003) Solid State Ionics 158:367–373

    Article  CAS  Google Scholar 

  24. Ramya CS, Selvasekarapandian S, Hirankumar G, Savitha T, Angelo PC (2008) J Non-Cryst Solids 354:1494–1502

    Article  CAS  Google Scholar 

  25. Nithya S, Selvasekarapandian S, Karthikeyan S, Inbavalli D, Sikkanthar S, Sanjeeviraja C (2014) Ionics 20(10):1391–1398

    Article  CAS  Google Scholar 

  26. Sikkanthar S, Karthikeyan S, Selvasekarapandian S, VinothPandi D, Nithya S, Sanjeeviraja C (2015) J Solid State Electrochem 19(4):987–999

    Article  CAS  Google Scholar 

  27. Sawai D, Miyamoto M, Kanamoto T, Ito MJ (2000) J Polym Sci Part B: Polym Phys 38:2571–2579

    Article  CAS  Google Scholar 

  28. Rajendran S, Sivakumar M, Subadevi R (2003) J Power Sources 124:225–230

    Article  CAS  Google Scholar 

  29. Kadir MFZ, Majid SR, Arof AK (2010) Electrochim Acta 55:1475–1482

    Article  CAS  Google Scholar 

  30. Stuff SI, Carr SH (1977) J Polym Sci Polym Phys Ed 15(3):485–499

    Article  Google Scholar 

  31. Coleman MM, Petcavich RJ (1978) J Polym Sci Polym Phys (Ed) 16:821–832

  32. Dissanayake MAKL, Bandara LRAK, Bokalawala RSP, PARD J, OA I, Somasundaram S (2002) Mater Res Bull 37:867–874

    Article  CAS  Google Scholar 

  33. Samsudin AS, Khairul WM, Isa MIN (2012) J Non-Cryst Solids 358:1104–1112

    Article  CAS  Google Scholar 

  34. Izuchi S, Ochiai S, Takeuchi K (1987) J Power Sources 68:37–4239

    Article  Google Scholar 

  35. Boukamp BA (1986) Solid State Ionics 20:31–44

    Article  CAS  Google Scholar 

  36. Boukamp BA (1986) Solid State Ionics 18(19):136–140

    Article  Google Scholar 

  37. Ramesh S, Arof AK (2001) Mater Sci Eng B 85:11–15

    Article  Google Scholar 

  38. Zhu W, Wang X, Yang B, Tang X (2001) J Polym Sci B Polym Phys 39:1246–1254

    Article  CAS  Google Scholar 

  39. Miyamoto T, Shibayama K (1973) J Appl Phys 44:5372–5376

    Article  CAS  Google Scholar 

  40. Luo J, Jensen AH, Brooks NR, Sniekers J, Knipper M, Aili D, Li Q, Vanroy B, Wübbenhorst M, Yan F, Van Meervelt L, Shao Z, Fang J, Luo Z-H, De Vos DE, Binnemans K, Fransaer J (2015) Energy Environmental Science 8:1276–1291

    Article  CAS  Google Scholar 

  41. Luo J, Conrad O, Vankelecom IFJ (2013) J Mater Chem 1:2238–2247

    Article  CAS  Google Scholar 

  42. Subbareddy Ch V, Sharma AK, Narasimha Rao VVR (2003) J Power Sources 114:338–345

  43. Macdonald (1987) (Ed) Impedance Spectrocopy- Emphasizing Solid materials and Systems, Wiley –Interscience New York

  44. Howell FS, Bose RA, Macedo PB, Moynihan CT (1974) J Phys Chem 78:639–648

    Article  CAS  Google Scholar 

  45. Kyritsis A, Pissis P, Grammatikakis J (1995) J Polym Sci Part B: PolymPhys 33:1737–1750

    Article  CAS  Google Scholar 

  46. Dyre JC (1991) J Non-Cryst Solids 135:219

    Article  Google Scholar 

  47. Wagner JB, Wagner C (1957) J Chem Phys 26:1597–1601

    Article  CAS  Google Scholar 

  48. Agrawal RC, Hashmi SA, Pandey GP (2007) Ionics 13:295–298

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Selvasekarapandian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sikkanthar, S., Karthikeyan, S., Selvasekarapandian, S. et al. Structural, electrical conductivity, and transport analysis of PAN–NH4Cl polymer electrolyte system. Ionics 22, 1085–1094 (2016). https://doi.org/10.1007/s11581-016-1645-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1645-x

Keywords

Navigation