Skip to main content

Advertisement

Log in

Hamilton energy balance and synchronization behaviors of two functional neurons

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

The nervous system is composed of various functional neurons, some of which perceive sound or light, and these physical signals can be converted into bioelectrical signals. From the biophysical point of view, piezoelectric ceramic embedded in neuronal circuits can detect the external auditory waves, while phototube can capture light signals, so as to obtain two functional neurons with auditory recognition and light-dependent recognition. Considering the two identical or different functional neurons are connected by an induction coil to stimulate magnetic field coupling, and there will be energy diversity when they are driven by different initial conditions or external stimulation. Thus, synaptic connections can be activated and awakened in an adaptive manner when field energy is exchanged, and the coupling channel remains open until the energy diversity between neurons is controlled at a limited threshold. For this purpose, a criterion of the coupling strength increases exponentially is proposed to discuss the enhancement of neuronal synaptic connections. It is found that two neurons can be coupled adaptively to achieve complete synchronization, quasi-synchronization or intermittent quasi-synchronization. These results could help in designing functional assistive devices for patients with hearing or vision impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Achour SB, Pascual O (2012) Astrocyte-neuron communication: functional consequences[J]. Neurochem Res 37(11):2464–2473

    Article  PubMed  Google Scholar 

  • An XL, Qiao S (2021) The hidden, period-adding, mixed-mode oscillations and control in a HR neuron under electromagnetic induction[J]. Chaos Solitons Fractals 143:110587

    Article  Google Scholar 

  • Bao BC, Wu PY, Bao H et al (2018) Numerical and experimental confirmations of quasi-periodic behavior and chaotic bursting in third-order autonomous memristive oscillator[J]. Chaos Solitons Fractals 106:161–170

    Article  Google Scholar 

  • Bao H, Zhang YZ, Liu WB et al (2020) Memristor synapse-coupled memristive neuron network: synchronization transition and occurrence of chimera[J]. Nonlinear Dyn 100(1):937–950

    Article  Google Scholar 

  • Citri A, Malenka RC (2008) Synaptic plasticity: multiple forms, functions, and mechanisms[J]. Neuropsychopharmacology 33(1):18–41

    Article  PubMed  Google Scholar 

  • FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane[J]. Biophys J 1(6):445–446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo YY, Zhu ZG, Wang CN et al (2020) Coupling synchronization between photoelectric neurons by using memristive synapse[J]. Optik 218:164993

    Article  Google Scholar 

  • Hindmarsh JL, Rose RM (1984) A model of neuronal bursting using three coupled first order differential equations[J]. Proc Royal Soc Lond Series B Biol Sci 221(1222):87–102

    CAS  Google Scholar 

  • Hodgkin AL, Huxley AF, Katz B (1952) Measurement of current-voltage relations in the membrane of the giant axon of Loligo[J]. J Physiol 116(4):424–448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu ZL, Ma J, Zhang G et al (2019a) Synchronization control between two Chua′s circuits via capacitive coupling[J]. Appl Math Comput 360:94–106

    Google Scholar 

  • Liu ZL, Wang CN, Jin WY et al (2019b) Capacitor coupling induces synchronization between neural circuits[J]. Nonlinear Dyn 97(4):2661–2673

    Article  Google Scholar 

  • Liu Y, Xu WJ, Ma J et al (2020a) A new photosensitive neuron model and its dynamics [J]. Front Inf Technol Electron Eng 21(9):1387–1396

    Article  Google Scholar 

  • Liu ZL, Zhou P, Ma J et al (2020b) Autonomic learning via saturation gain method, and synchronization between neurons[J]. Chaos Solitons Fractals 131:109533

    Article  Google Scholar 

  • Lu LL, Jia Y, Xu Y et al (2019) Energy dependence on modes of electric activities of neuron driven by different external mixed signals under electromagnetic induction[J]. Sci China Technol Sci 62(3):427–440

    Article  Google Scholar 

  • Ma XW, Xu Y (2022) Taming the hybrid synapse under energy balance between neurons[J]. Chaos Solitons Fractals 159:112149

    Article  Google Scholar 

  • Ma J, Wu FQ, Wang CN (2017) Synchronization behaviors of coupled neurons under electromagnetic radiation[J]. Int J Mod Phys B 31(2):1650251

    Article  Google Scholar 

  • Ma J, Yang ZQ, Yang LJ et al (2019) A physical view of computational neurodynamics[J]. J Zhejiang Univ-Sci A 20(9):639–659

    Article  Google Scholar 

  • Magee JC, Grienberger C (2020) Synaptic plasticity forms and functions[J]. Annu Rev Neurosci 43:95–117

    Article  PubMed  CAS  Google Scholar 

  • Meyer D, Bonhoeffer T, Scheuss V (2014) Balance and stability of synaptic structures during synaptic plasticity[J]. Neuron 82(2):430–443

    Article  PubMed  CAS  Google Scholar 

  • Miller AC, Voelker LH, Shah AN et al (2015) Neurobeachin is required postsynaptically for electrical and chemical synapse formation[J]. Curr Biol 25(1):16–28

    Article  PubMed  CAS  Google Scholar 

  • Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber[J]. Biophys J 35(1):193–213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qiao S, An XL (2021) Dynamic expression of a HR neuron model under an electric field[J]. Int J Mod Phys B 35(02):2150024

    Article  Google Scholar 

  • Qin HX, Wang CN, Cai N et al (2018) Field coupling-induced pattern formation in two-layer neuronal network[J]. Physica A 501:141–152

    Article  Google Scholar 

  • Qin HX, Ma J, Ren GD et al (2018) Field coupling-induced wave propagation and pattern stability in a two-layer neuronal network under noise[J]. Int J Modern Phys B 32(27):1850298

    Article  Google Scholar 

  • Ren GD, Xu Y, Wang CN (2017) Synchronization behavior of coupled neuron circuits composed of memristors[J]. Nonlinear Dyn 88(2):893–901

    Article  Google Scholar 

  • Rocha R, Ruthiramoorthy J, Kathamuthu T (2017) Memristive oscillator based on Chua’s circuit: stability analysis and hidden dynamics[J]. Nonlinear Dyn 88(4):2577–2587

    Article  Google Scholar 

  • Shafiei M, Jafari S, Parastesh F et al (2020) Time delayed chemical synapses and synchronization in multilayer neuronal networks with ephaptic inter-layer coupling[J]. Commun Nonlinear Sci Numer Simul 84:105175

    Article  Google Scholar 

  • Shahverdiev EM, Hashimova LH, Bayramov PA et al (2015) Chaos synchronization between time delay coupled Josephson junctions governed by a central junction[J]. J Supercond Novel Magn 28(12):3499–3505

    Article  CAS  Google Scholar 

  • Shinomoto S, Kim H, Shimokawa T et al (2009) Relating neuronal firing patterns to functional differentiation of cerebral cortex[J]. PLoS Comput Biol 5(7):e1000433

    Article  PubMed  PubMed Central  Google Scholar 

  • Szűcs A (1998) Applications of the spike density function in analysis of neuronal firing patterns[J]. J Neurosci Methods 81(1–2):159–167

    Article  PubMed  Google Scholar 

  • Ujfalussy BB, Makara JK (2020) Impact of functional synapse clusters on neuronal response selectivity[J]. Nat Commun 11(1):1–14

    Article  Google Scholar 

  • Usha K, Subha P (2019) Collective dynamics and energy aspects of star-coupled Hindmarsh-Rose neuron model with electrical, chemical and field couplings[J]. Nonlinear Dyn 96(3):2115–2124

    Article  Google Scholar 

  • Wang CN, Lv M, Alsaedi A et al (2017a) Synchronization stability and pattern selection in a memristive neuronal network[J]. Chaos 27(11):113108

    Article  PubMed  Google Scholar 

  • Wang Y, Wang CN, Ren GD et al (2017b) Energy dependence on modes of electric activities of neuron driven by multi-channel signals[J]. Nonlinear Dyn 89(3):1967–1987

    Article  Google Scholar 

  • Wang CN, Tang J, Ma J (2019) Minireview on signal exchange between nonlinear circuits and neurons via field coupling[J]. Eur Phys J Spec Top 228(10):1907–1924

    Article  Google Scholar 

  • Wang CN, Wang Y, Ma J (2016) Calculation of Hamilton energy function of dynamical system by using Helmholtz theorem[J]. Acta Phys Sin 65(24):240501

    Article  Google Scholar 

  • Wei LX, Zhang JG, An XL et al (2021) Stability analysis and Hopf bifurcation based on time delay neurons under electromagnetic fields[J]. Int J Mod Phys B 35(28):2150291

    Article  Google Scholar 

  • Xie Y, Yao Z, Hu XK et al (2021b) Enhance sensitivity to illumination and synchronization in light-dependent neurons[J]. Chin Phys B 30(12):120510

    Article  Google Scholar 

  • Xie Y, Yao Z, Ma J (2022) Phase synchronization and energy balance between neurons[J]. Front Inf Technol Electron Eng. https://doi.org/10.1631/FITEE.2100563

    Article  Google Scholar 

  • Xie Y, Zhu ZG, Zhang XF et al (2021) Control of firing mode in nonlinear neuron circuit driven by photocurrent[J]. Acta Phys Sin 70(21):210502

    Article  Google Scholar 

  • Xu LF, Li CD, Chen L (2016) Contrastive analysis of neuron model[J]. Acta Phys Sin 65(24):240701

    Article  Google Scholar 

  • Xu Y, Jia Y, Ma J et al (2018) Collective responses in electrical activities of neurons under field coupling[J]. Sci Rep 8(1):1349

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Guo YY, Ren GD et al (2020) Dynamics and stochastic resonance in a thermosensitive neuron[J]. Appl Math Comput 385:125427

    Google Scholar 

  • Yang XQ, Ma J, Yi M et al (2011) Delay and diversity-induced synchronization transitions in a small-world neuronal network[J]. Phys Rev E 83(4):046207

    Article  Google Scholar 

  • Yao Z, Wang CN (2021) Control the collective behaviors in a functional neural network [J]. Chaos Solitons Fractals 152:111361

    Article  Google Scholar 

  • Yao Z, Ma J, Yao YG et al (2019) Synchronization realization between two nonlinear circuits via an induction coil coupling[J]. Nonlinear Dyn 96(1):205–217

    Article  Google Scholar 

  • Yao Z, Zhou P, Zhu ZG et al (2021a) Phase synchronization between a light-dependent neuron and a thermosensitive neuron[J]. Neurocomputing 423:518–534

    Article  Google Scholar 

  • Yao Z, Wang CN, Zhou P et al (2021b) Regulating synchronous patterns in neurons and networks via field coupling[J]. Commun Nonlinear Sci Numer Simul 95:105583

    Article  Google Scholar 

  • Yu WT, Zhang J, Tang J (2017) Effects of dynamic synapses, neuronal coupling, and time delay on firing of neuron[J]. Acta Phys Sin 66(20):200201

    Article  Google Scholar 

  • Zandi-Mehran N, Jafari S, Hashemi Golpayegani SMR et al (2020) Different synaptic connections evoke different firing patterns in neurons subject to an electromagnetic field[J]. Nonlinear Dyn 100(2):1809–1824

    Article  Google Scholar 

  • Zhang XF, Wu FQ, Ma J et al (2020a) Field coupling synchronization between chaotic circuits via a memristor[J]. Int J Electron Commun 115:153050

    Article  Google Scholar 

  • Zhang Y, Wang CN, Tang J et al (2020b) Phase coupling synchronization of FHN neurons connected by a Josephson junction[J]. Sci China Technol Sci 63(11):2328–2338

    Article  CAS  Google Scholar 

  • Zhang XF, Wang CN, Ma J et al (2020c) Control and synchronization in nonlinear circuits by using a thermistor[J]. Mod Phys Lett B 34(25):2050267

    Article  CAS  Google Scholar 

  • Zhang XF, Yao Z, Guo YY et al (2021a) Target wave in the network coupled by thermistors[J]. Chaos Solitons Fractals 142:110455

    Article  Google Scholar 

  • Zhang XF, Ma J, Xu Y et al (2021c) Synchronization between FitzHugh-Nagumo neurons coupled with phototube[J]. Acta Phys Sin 70(9):232–241

    Article  Google Scholar 

  • Zhang Y, Zhou P, Yao Z et al (2021) Resonance synchronisation between memristive oscillators and network without variable coupling[J]. Pramana 95(1):49

    Article  Google Scholar 

  • Zhou Q, Wei DQ (2021) Collective dynamics of neuronal network under synapse and field coupling[J]. Nonlinear Dyn 105(1):753–765

    Article  Google Scholar 

  • Zhou P, Yao Z, Ma J et al (2021) A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus[J]. Chaos Solitons Fractals 145:110751

    Article  Google Scholar 

  • Zhou P, Zhang XF, Ma J (2022) How to wake up the electric synapse coupling between neurons? Nonlinear Dyn. https://doi.org/10.1007/s11071-022-07282-0

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported from the National Natural Science Foundation (No. 11962012, 61863022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinlei An.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Xiong, L., An, X. et al. Hamilton energy balance and synchronization behaviors of two functional neurons. Cogn Neurodyn 17, 1683–1702 (2023). https://doi.org/10.1007/s11571-022-09908-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-022-09908-w

Keywords

Navigation