Skip to main content

Advertisement

Log in

Collective dynamics and energy aspects of star-coupled Hindmarsh–Rose neuron model with electrical, chemical and field couplings

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, we study the collective dynamics and energy aspects of star-coupled Hindmarsh–Rose neuron model with memristor. In the presence of chemical coupling and field effects, the system exhibits desynchrony, synchrony and drum head mode states. The electrically coupled network with field effects shows desynchronized and synchronized regions. The parameter space has been plotted to explain the transition from desynchronized state to synchronized and drum head mode regions. The time evolution of membrane potential in the absence of synaptic coupling reveals that field coupling regulates the electrical modes of the system. Based on Helmholtz theorem, the Hamilton energy function associated with the system has been derived. The average energy variation of chemically coupled neurons shows two important regions. A fluctuating regime corresponding to the desynchronized state and a linearly increasing regime corresponding to the synchronized state with amplitude death have been observed. In electrically coupled star network, the average energy returns to its initial uncoupled value in the synchronized state. The study finds applications in identical and nonidentical networks of chaotic oscillators with different coupling topologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Belykh, I., Hasler, M.: Mesoscale and clusters of synchrony in networks of bursting neurons. Chaos 21, 016106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Pikovsky, A., Rosenblum, M.: Dynamics of globally coupled oscillators: progress and perspectives. Chaos 25, 097616 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Omelchenko, I., Omelchenko, O.E., Hovel, P., Scholl, E.: When nonlocal coupling between oscillators becomes stronger: patched synchrony or multi-chimera states. Phys. Rev. Lett. 110, 224101 (2013)

    Article  Google Scholar 

  4. El-Nashar, H.F., Zhang, Y., Cerdeira, H.A., Ibiyinka, A.F.: Synchronization in a chain of nearest neighbors coupled oscillators with fixed ends. Chaos 13, 1216 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Pereda, A.E.: Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 15(4), 250–263 (2014)

    Article  Google Scholar 

  6. Veenstra, R.D.: Cell Physiology, 4th edn. Academic Press, New York (2012)

    Google Scholar 

  7. Thottil, S.K., Ignatius, R.P.: Influence of memristor and noise on h–r neurons. Nonlinear Dyn. 95(1), 239–257 (2018)

    Article  Google Scholar 

  8. Xu, Y., Ying, H., Jia, Y., Ma, J., Hayat, T.: Autaptic regulation of electrical activities in neuron under electromagnetic induction. Sci. Rep. 7, 43452 (2017)

    Article  Google Scholar 

  9. Xu, Y., Jia, Y., Ma, J., Hayat, T., Alsaedi, A.: Collective responses in electrical activities of neurons under field coupling. Sci. Rep. 8, 1349 (2018)

    Article  Google Scholar 

  10. Hrg, D.: Synchronization of two Hindmarsh–Rose neurons with unidirectional coupling. Neural Netw. 40, 73–79 (2013)

    Article  MATH  Google Scholar 

  11. Ali, M.K.: Synchronization of a chaotic map in the presence of common noise. Phys. Rev. E 55, 4804 (1997)

    Article  Google Scholar 

  12. Andrade, V., Davidchack, R.L., Lai, Y.C.: Noise scaling of phase synchronization of chaos. Phys. Rev. E 61, 3230 (2000)

    Article  Google Scholar 

  13. Abrams, D.M., Strogatz, S.H.: Chimera states for coupled oscillators. Phys. Rev. Lett. 93, 174102 (2004)

    Article  Google Scholar 

  14. Wang, Z., Shi, X.: Lag synchronization of multiple identical Hindmarsh–Rose neuron models coupled in a ring structure. Nonlinear Dyn. 60(3), 375–383 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shi, X., Wang, Z.: Adaptive synchronization of time delay hindmarsh–rose neuron system via self-feedback. Nonlinear Dyn. 69(4), 2147–2153 (2012)

    Article  MathSciNet  Google Scholar 

  16. Pecora, L.M., Carroll, T.L.: Synchronization stability in coupled oscillator arrays: solution for arbitrary configurations. Int. J. Bifurcat. Chaos 10(2), 273–290 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Usha, K., Subha, P.A., Nayak, C.R.: The route to synchrony via drum head mode and mixed oscillatory state in star coupled Hindmarsh–Rose neural network. Chaos Solitons Fractals 108, 25–31 (2018)

    Article  MATH  Google Scholar 

  18. Jonq, J., Yu-Hao, L.: Cluster synchronization in networks of neurons with chemical synapses. Chaos 24, 013110 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Xu, F., Zhang, J., Fang, T., Huang, S., Wang, M.: Synchronous dynamics in neural system coupled with memristive synapse. Nonlinear Dyn. 92(3), 13951402 (2018)

    Article  Google Scholar 

  20. Hu, X., Liu, C., Liu, L., Ni, J., Yao, Y.: Chaotic dynamics in a neural network under electromagnetic radiation. Nonlinear Dyn. 91(3), 1541–1554 (2017)

    Article  Google Scholar 

  21. Lv, M., Wang, C., Ren, G., Ma, J., Song, X.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85(3), 1479–1490 (2016)

    Article  Google Scholar 

  22. Xu, Y., Jia, Y., Kirunda, J.B., Shen, J., Ge, M., Lu, L., Pei, Q.: Dynamic behaviors in coupled neuron system with the excitatory and inhibitory autapse under electromagnetic induction. Complexity 2018, 3012743 (2018)

    Google Scholar 

  23. Rostami, Z., Jafari, S., Perc, M., Slavinec, M.: Elimination of spiral waves in excitable media by magnetic induction. Nonlinear Dyn. 94(1), 679692 (2018)

    Article  Google Scholar 

  24. Xu, Y., Jia, Y., Ge, M., Lu, L., Yang, L., Zhan, X.: Effects of ion channel blocks on electrical activity of stochastic hodgkin-huxley neural network under electromagnetic induction. Neurocomputing 283, 196–204 (2018)

    Article  Google Scholar 

  25. Ge, M., Jia, Y., Kirunda, J.B., Xu, Y., Shen, J., Lu, L., Liu, Y., Pei, Q., Zhan, X., Yang, L.: Propagation of firing rate by synchronization in a feed-forward multilayer hindmarsh–rose neural network. Neurocomputing 320, 60–68 (2018)

    Article  Google Scholar 

  26. Lu, L., Jia, Y., Kirunda, J.B., Xu, Y., Ge, M., Pei, Q., Yang, L.: Effects of noise and synaptic weight on propagation of subthreshold excitatory postsynaptic current signal in a feed-forward neural network. Nonlinear Dyn. https://doi.org/10.1007/s11071-018-4652-9 (2019)

  27. Xu, Y., Jia, Y., Wang, H., Liu, Y., Wang, P., Zhao, Y.: Spiking activities in chain neural network driven by channel noise with field coupling. Nonlinear Dyn. https://doi.org/10.1007/s11071-018-04752-2 (2019)

  28. Torrealdea, F.J., Sarasola, C., d’Anjou, A.: Energy consumption and information transmission in model neurons. Chaos Solitons Fractals 40, 60–68 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Guan, W., Yi, S., Quan, Y.: Exponential synchronization of coupled memristive neural networks via pinning control. Chin. Phys. B 22(5), 050504 (2013)

    Article  Google Scholar 

  30. Wang, Y., Wang, Z.D., Wang, W.: Dynamical behaviors of periodically forced hindmarsh-rose neural model: the role of excitability and ‘intrinsic’ stochastic resonance. J. Phys. Soc. Jpn. 69, 276–283 (2000)

    Article  Google Scholar 

  31. Sarasola, C., Torrealdea, F.J., d’Anjou, A., Moujahid, A., Grana, M.: Energy balance in feedback synchronization of chaotic systems. Phys. Rev. 69, 011606 (2004)

    MATH  Google Scholar 

  32. Yu, L.C., Liu, L.W.: Optimal size of stochastic hodgkin-huxley neuronal systems for maximal energy efficiency in coding pulse signal. Phys. Rev. E 89, 032725 (2014)

    Article  Google Scholar 

  33. Lu, L., Jia, Y., Xu, Y., Ge, M., Yang, L., Zhan, X.: Energy dependence on modes of electric activities of neuron driven by different external mixed signals under electromagnetic induction. Sci. China Technol. Sci. 62(3), 427–440 (2019)

    Article  Google Scholar 

  34. Moujahid, A., d’Anjou, A., Torrealdea, F., Torrealdea, F.: Efficient synchronization of structurally adaptive coupled hindmarsh–rose neurons. Chaos Solitons Fractals 44, 929–933 (2011)

    Article  Google Scholar 

  35. Ma, J., Wu, F., Jin, W., Zhou, P., Hayat, T.: Calculation of hamilton energy and control of dynamical systems with different types of attractors. Chaos 27, 053108 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ma, J., Zhou, P., Ahmad, B., Ren, G., Wang, C.: Chaos and multi-scroll attractors in rcl-shunted junction coupled jerk circuit connected by memristor. PLoS ONE 13(1), e0191120 (2018)

    Article  Google Scholar 

  37. Usha, K., Subha, P.A.: Energy feedback and synchronous dynamics of hindmarsh–rose neuron model with memristor. Chin. Phys. B 28(2), 020502 (2019)

    Article  Google Scholar 

  38. Xin-lei, A., Li, Z.: Dynamics analysis and hamilton energy control of a generalized lorenz system with hidden attractor. Nonlinear Dyn. 94(4), 2995–3010 (2018)

    Article  Google Scholar 

  39. Li, F., Yao, C.: The infinite-scroll attractor and energy transition in chaotic circuit. Nonlinear Dyn. 84(4), 2305–2315 (2016)

    Article  MathSciNet  Google Scholar 

  40. Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B 221, 87–102 (1984)

    Article  Google Scholar 

  41. Rose, R.M., Hindmarsh, J.L.: A model of a thalamic neuron. Proc. R. Soc. Lond. B 225, 161–193 (1985)

    Article  Google Scholar 

  42. Storace, M., Linaro, D., de Lange, E.: The hindmarsh–rose neuron model: bifurcation analysis and piecewise-linear approximations. Chaos 18, 033128 (2008)

    Article  MathSciNet  Google Scholar 

  43. Usha, K., Subha, P.A.: Star-coupled hindmarsh–rose neural network with chemical synapses. Int. J. Mod. Phys. C 29, 1850023 (2018)

    Article  Google Scholar 

  44. Thottil, S.K., Ignatius, R.P.: Nonlinear feedback coupling in hindmarsh–rose neurons. Nonlinear Dyn. 87(3), 1879–1899 (2017)

    Article  Google Scholar 

  45. Belykh, V.N., Belykh, I.V., Mosekilde, E.: Cluster synchronization modes in an ensemble of coupled chaotic oscillators. Phys. Rev. E 63, 036216 (2001)

    Article  Google Scholar 

  46. Somers, D., Kopell, N.: Rapid synchronization through fast threshold modulation. Biol. Cybern. 68(5), 393–407 (1993)

    Article  Google Scholar 

  47. Usha, K., Subha, P.A.: Hindmarsh–rose neuron model with memristors. BioSystems 178, 1–9 (2019)

    Google Scholar 

  48. Monteiro, L.H.A., Filho, A.P., Chaui-Berlinck, J.G., Piqueira, J.R.C.: Oscillation death in a two neuron network with delay in a self connection. J. Biol. Syst. 15(1), 49–61 (2007)

    Article  MATH  Google Scholar 

  49. Torrealdea, F.J., d’Anjou, A., Grana, M., Sarasola, C.: Energy aspects of the synchronization of model neurons. Phys. Rev. E 74, 011905 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

UK would like to acknowledge University Grants Commission, India, for providing financial assistance through JRF scheme for doing the research work. PAS would like to acknowledge DST, India, for their financial assistance through FIST program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Subha.

Ethics declarations

Conflict of interest:

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usha, K., Subha, P.A. Collective dynamics and energy aspects of star-coupled Hindmarsh–Rose neuron model with electrical, chemical and field couplings. Nonlinear Dyn 96, 2115–2124 (2019). https://doi.org/10.1007/s11071-019-04909-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04909-7

Keywords

PACS 

Navigation