Skip to main content
Log in

Energy evolution in function neuronal network under different coupling channels

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Based on an auditory neuron model developed from the piezoelectric neuronal circuit, the Hamilton energy function is obtained by using the Helmholtz’s theorem, and this energy is contributed by the electric field and magnetic field described by capacitor and inductor, respectively. Three auditory neuronal circuits with different firing states are connected in a ring network by resistor, inductor, and capacitor. The coupling channels can be tamed under voltage, magnetic field, and electric field couplings simultaneously. These three types of coupling can modulate synchronization via continuous energy exchange and pumping, and the resistor channel consumes Joule heat, while the capacitor and inductor channels can pump and conserve field energy. The proportion of field energy maintained in each electrical component in the network is calculated separately to distinguish the dependence of firing state and synchronization mode on the energy. It is found that strong coupling increases the proportion of electric field energy in periodic neurons or the proportion of magnetic field energy in chaotic neurons. The total energy proportion of the three coupling channels continuously increases if all neurons in the network exhibit periodic firing. But the presence of neurons with chaotic firing causes the total energy proportion of the coupling channels to increase first and then decrease. In fact, more energy is injected into the inductor channel compared to resistor and capacitor, thus facilitating the synchronization of neurons connected by inductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed in this work are available upon request from the corresponding author.

References

  1. Leuthardt, E.C., Schalk, G., Wolpaw, J.R., et al.: A brain-computer interface using electrocorticographic signals in humans. J. Neural Eng. 1(2), 63 (2004)

    Google Scholar 

  2. Hodgkin, A.L., Huxley, A.F.: Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116(4), 449–472 (1952)

    Google Scholar 

  3. FitzHugh, R.: Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophys. 17(4), 257–278 (1955)

    Google Scholar 

  4. FitzHugh, R.: An active pulse transmission line simulating nerve axon. IEEE Trans. Electron. Comput. EC-12(2), 158–158 (1963)

    Google Scholar 

  5. Hindmarsh, J.L., Rose, R.M.: A model of the nerve impulse using two first-order differential equations. Nature 296(5853), 162–164 (1982)

    Google Scholar 

  6. Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. B: Biol. Sci. 221(1222), 87–102 (1984)

    Google Scholar 

  7. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35(1), 193–213 (1981)

    Google Scholar 

  8. Baysal, V., Saraç, Z., Yilmaz, E.: Chaotic resonance in Hodgkin-Huxley neuron. Nonlinear Dyn. 97, 1275–1285 (2019)

    Google Scholar 

  9. Calim, A., Baysal, V.: Chaotic resonance in an astrocyte-coupled excitable neuron. Chaos, Solit. Fract. 176, 114105 (2023)

    MathSciNet  Google Scholar 

  10. Baysal, V., Solmaz, R., Ma, J.: Investigation of chaotic resonance in Type-I and Type-II Morris-Lecar neurons. Appl. Math. Comput. 448, 127940 (2023)

    MathSciNet  Google Scholar 

  11. Njitacke, Z.T., Awrejcewicz, J., Ramakrishnan, B., et al.: Hamiltonian energy computation and complex behavior of a small heterogeneous network of three neurons: circuit implementation. Nonlinear Dyn. 107(3), 2867–2886 (2022)

    Google Scholar 

  12. Wu, F.Q., Hu, X.K., Ma, J.: Estimation of the effect of magnetic field on a memristive neuron. Appl. Math. Comput. 432, 127366 (2022)

    MathSciNet  Google Scholar 

  13. Xu, Y., Ren, G.D., Ma, J.: Patterns stability in cardiac tissue under spatial electromagnetic radiation. Chaos, Solit. Fract. 171, 113522 (2023)

    MathSciNet  Google Scholar 

  14. Guo, Y.T., Xie, Y., Ma, J.: Nonlinear responses in a neural network under spatial electromagnetic radiation. Physica A 626, 129120 (2023)

    Google Scholar 

  15. Zhang, Y., Xu, Y., Yao, Z., et al.: A feasible neuron for estimating the magnetic field effect. Nonlinear Dyn. 102, 1849–1867 (2020)

    Google Scholar 

  16. Louodop, P., Tchitnga, R., Fagundes, F.F., et al.: Extreme multistability in a Josephson-junction-based circuit. Phys. Rev. E 99(4), 042208 (2019)

    Google Scholar 

  17. Xu, Y., Guo, Y.Y., Ren, G.D., et al.: Dynamics and stochastic resonance in a thermosensitive neuron. Appl. Math. Comput. 385, 125427 (2020)

    MathSciNet  Google Scholar 

  18. Xu, Y., Liu, M., Zhu, Z.G., et al.: Dynamics and coherence resonance in a thermosensitive neuron driven by photocurrent. Chin. Phys. B 29(9), 098704 (2020)

    Google Scholar 

  19. Yang, F.F., Ma, J.: A controllable photosensitive neuron model and its application. Opt. Laser Technol. 163, 109335 (2023)

    Google Scholar 

  20. Zhou, P., Yao, Z., Ma, J., et al.: A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus. Chaos, Solit. Fract. 145, 110751 (2021)

    MathSciNet  Google Scholar 

  21. Yang, F.F., Ma, J., An, X.L.: Mode selection and stability of attractors in Chua circuit driven by piezoelectric sources. Chaos, Solit. Fract. 162, 112450 (2022)

    MathSciNet  Google Scholar 

  22. Liu, Z.L., Yu, Y., Wang, Q.Y.: Functional modular organization unfolded by chimera-like dynamics in a large-scale brain network model. Sci. China Technol. Sci. 65(7), 1435–1444 (2022)

    Google Scholar 

  23. Yu, Y., Fan, Y.B., Han, F., et al.: Transcranial direct current stimulation inhibits epileptic activity propagation in a large-scale brain network model. Sci. China Technol. Sci. (2023). https://doi.org/10.1007/s11431-022-2341-x

    Article  Google Scholar 

  24. Liu, Z.L., Han, F., Wang, Q.Y.: A review of computational models for gamma oscillation dynamics: from spiking neurons to neural masses. Nonlinear Dyn. 108(3), 1849–1866 (2022)

    Google Scholar 

  25. Bao, H., Chen, Z.G., Cai, J.M., et al.: Memristive cyclic three-neuron-based neural network with chaos and global coexisting attractors. Sci. China Technol. Sci. 65(11), 2582–2592 (2022)

    Google Scholar 

  26. Liu, Y., Nazarimehr, F., Khalaf, A.J.M., et al.: Detecting bifurcation points in a memristive neuron model. The Eur. Phys. J. Spec. Top. 228, 1943–1950 (2019)

    Google Scholar 

  27. Yao, Y.: Logical chaotic resonance in the FitzHugh-Nagumo neuron. Nonlinear Dyn. 107(4), 3887–3901 (2022)

    Google Scholar 

  28. Rajagopal, K., Nazarimehr, F., Karthikeyan, A., et al.: Dynamics of a neuron exposed to integer-and fractional-order discontinuous external magnetic flux. Front. Inform. Technol. Electr. Eng. 20, 584–590 (2019)

    Google Scholar 

  29. Wang, G.W., Xu, Y., Ge, M.Y., et al.: Mode transition and energy dependence of FitzHugh-Nagumo neural model driven by high-low frequency electromagnetic radiation. AEU-Int. J. Electr. Commun. 120, 153209 (2020)

    Google Scholar 

  30. Wang, R.B., Zhang, Z.K.: On energy principle of couple neuron activities. Acta Biophysica Sinica 21(6), 436–442 (2005)

    Google Scholar 

  31. Wang, C.N., Wang, Y., Ma, J.: Calculation of Hamilton energy function of dynamical system by using Helmholtz theorem. Acta Physica Sinica 65(24), 240501 (2016)

    Google Scholar 

  32. Jia, J.E., Yang, F.F., Ma, J.: A bimembrane neuron for computational neuroscience. Chaos, Solit. Fract. 173, 113689 (2023)

    MathSciNet  Google Scholar 

  33. Xie, Y., Yao, Z., Ren, G.D., et al.: Estimate physical reliability in Hindmarsh-Rose neuron. Phys. Lett. A 464, 128693 (2023)

    MathSciNet  Google Scholar 

  34. Njitacke, Z.T., Koumetio, B.N., Ramakrishnan, B., et al.: Hamiltonian energy and coexistence of hidden firing patterns from bidirectional coupling between two different neurons. Cogn. Neurodyn. 16, 899–916 (2022)

    Google Scholar 

  35. Ma, J.: Energy function for some maps and nonlinear oscillators. Appl. Math. Comput. 463, 128379 (2024)

    MathSciNet  Google Scholar 

  36. Xie, Y., Zhou, P., Yao, Z.: Response mechanism in a functional neuron under multiple stimuli. Physica A 607, 128175 (2022)

    MathSciNet  Google Scholar 

  37. Xie, Y., Ma, J.: How to discern external acoustic waves in a piezoelectric neuron under noise? J. Biol. Phys. 48(3), 339–353 (2022)

    Google Scholar 

  38. Xie, Y., Ye, Z., Li, X., et al.: A novel memristive neuron model and its energy characteristics. Cogn. Neurodyn. (2024). https://doi.org/10.1007/s11571-024-10065-5

    Article  Google Scholar 

  39. Yang, F.F., Xu, Y., Ma, J.: A memristive neuron and its adaptability to external electric field. Chaos: An Interdisc. J. Nonlinear Sci. 33, 023110 (2023)

    MathSciNet  Google Scholar 

  40. Shahverdiev, E.M., Hashimova, L.H., Bayramov, P.A., et al.: Chaos synchronization between time delay coupled Josephson junctions governed by a central junction. J. Supercond. Novel Magn. 28(12), 3499–3505 (2015)

    Google Scholar 

  41. Zhang, Y., Wang, C.N., Tang, J., et al.: Phase coupling synchronization of FHN neurons connected by a Josephson junction. Sci. China Technol. Sci. 63(11), 2328–2338 (2020)

    Google Scholar 

  42. Bao, H., Hua, M.J., Ma, J., et al.: Offset-control plane coexisting behaviors in two-memristor-based Hopfield neural network. IEEE Trans. Industr. Electron. 70(10), 10526–10535 (2023)

    Google Scholar 

  43. Wu, F.Q., Guo, Y.T., Ma, J.: Reproduce the biophysical function of chemical synapse by using a memristive synapse. Nonlinear Dyn. 109, 2063–2084 (2022)

    Google Scholar 

  44. Liu, Z.L., Wang, C.N., Zhang, G., et al.: Synchronization between neural circuits connected by hybrid synapse. Int. J. Mod. Phys. B 32(16), 1950170 (2019)

    MathSciNet  Google Scholar 

  45. Iqbal, M.: Modeling and behavioral analysis of neurons under direction-dependent resistive, inductive and capacitive coupling. Res. Control Optim. 3, 100016 (2021)

    Google Scholar 

  46. Yao, Z., Wang, C.N.: Collective behaviors in a multiple functional network with hybrid synapses. Physica A 605, 127981 (2022)

    Google Scholar 

  47. Wu, F.Q., Guo, Y.T., Ma, J., et al.: Synchronization of bursting memristive Josephson junctions via resistive and magnetic coupling. Appl. Math. Comput. 455, 128131 (2023)

    MathSciNet  Google Scholar 

  48. Zhou, P., Ma, J., Xu, Y.: Phase synchronization between neurons under nonlinear coupling via hybrid synapse. Chaos Solit. Fract. 169, 113238 (2023)

    Google Scholar 

  49. Liu, Z.L., Wang, C.N., Jin, W.Y., et al.: Capacitor coupling induces synchronization between neural circuits. Nonlinear Dyn. 97, 2661–2673 (2019)

    Google Scholar 

  50. Sun, G.P., Yang, F.F., Ren, G.D., et al.: Energy encoding in a biophysical neuron and adaptive energy balance under field coupling. Chaos Solit. Fract. 169, 113230 (2023)

    MathSciNet  Google Scholar 

  51. Zhang, L., An, X.L., Zhang, J.G., et al.: Bifurcation analysis and synchronous patterns between field coupled neurons with time delay. Complexity 2022, 7487477 (2022)

    Google Scholar 

  52. Zhang, L., An, X.L., Xiong, L., et al.: Synchronization, extreme multistability, and its control for a field coupled neurons with time delays. Int. J. Mod. Phys. B 36(19), 2250114 (2022)

    Google Scholar 

  53. Yao, Z., Wang, C.N., Zhou, P., et al.: Regulating synchronous patterns in neurons and networks via field coupling. Commun. Nonlinear Sci. Numer. Simul. 95, 105583 (2021)

    MathSciNet  Google Scholar 

  54. Ma, J.: Biophysical neurons, energy, and synapse controllability: a review. J. Zhejiang Univ.-Sci. A 24(2), 109–129 (2023)

    Google Scholar 

  55. Hou, B., Ma, J., Yang, F.F.: Energy-guided synapse coupling between neurons under noise. J. Biol. Phys. 49(1), 49–76 (2023)

    Google Scholar 

  56. Zhang, L., Xiong, L., An, X.L., et al.: Hamilton energy balance and synchronization behaviors of two functional neurons. Cogn. Neurodyn. 17, 1683–1702 (2023)

    Google Scholar 

  57. Zhou, P., Zhang, X.F., Ma, J.: How to wake up the electric synapse coupling between neurons? Nonlinear Dyn. 108(2), 1681–1695 (2022)

    Google Scholar 

Download references

Acknowledgements

The authors thanks Dr Feifei Yang for helpful verification and checking in the proof.

Funding

This work is supported from the National Natural Science Foundation of China (No.12062009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wuyin Jin.

Ethics declarations

Conflict of interest

The authors confirm no conflict of interest with publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Jin, W. & An, X. Energy evolution in function neuronal network under different coupling channels. Nonlinear Dyn 112, 8581–8602 (2024). https://doi.org/10.1007/s11071-024-09469-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09469-z

Keywords

Navigation