Skip to main content

Advertisement

Log in

Breeding Differently—the Digital Revolution: High-Throughput Phenotyping and Genotyping

  • Published:
Potato Research Aims and scope Submit manuscript

Abstract

A conventional potato breeding strategy uses targeted outcrossing, followed by phenotypic recurrent selection over a series of generations to identify improved cultivars. This paper reviews recent research in Australia aimed at improving the efficiency of such breeding. To develop marker-assisted selection (MAS) for traits of interest, our initial targets were qualitative disease resistances for potato cyst nematode (Globodera rostochiensis Ro1), Potato virus Y and Potato virus X. We undertook a cost analysis comparison between MAS and conventional screening, confirming that MAS would be cost-effective within a breeding programme. Then, as the majority of target traits are quantitative in nature, we also looked at methods to address these traits, including progeny testing and a quantitative genetic analysis technique to develop estimated breeding values (EBVs). We found the markers were useful for detecting the disease resistance characters, while the EBVs improved the analysis of the complex traits. Using a combination of MAS, EBVs and conventional screening methods, we then designed a breeding scheme for rapid selection of cultivars with multiple desirable traits, reducing the breeding cycle from over 10 to 4 years. We then explored the factors that will affect the application of genomic selection in potato and investigated strategies to incorporate genomic selection in potato breeding, as we found that it would accelerate genetic gain as the breeding cycle can be reduced to 1 year. Improvements in computational power are also flowing on to research capabilities such as sequencing, high-throughput phenotyping and data analysis, which will accelerate germplasm improvement and breeding. High-throughput phenotyping facilities are being developed that include automated glasshouse systems equipped with imaging sensors and in-field high-throughput phenotyping systems with sensors mounted on ground- or aerial-based vehicles. Using these technological improvements in phenotypic and genotypic analysis will reduce the breeding cycle in a cost-effective manner and means that we can now breed differently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson J, Howard H (1981) Effectiveness of selection in the early stages of potato breeding programmes. Potato Res 24:289–299

    Article  Google Scholar 

  • Barone A (2004) Molecular marker-assisted selection for potato breeding. Am J Potato Res 81:111–117

    Article  Google Scholar 

  • Biryukova V, Zhuravlev A, Abrosimova S, Kostina L, Khromova L, Shmyglya I, Morozova N, Kirsanova S (2008) Use of molecular markers of potato golden nematode resistance genes H1 and GRO1. Russ Agric Sci 34:365–368

    Article  Google Scholar 

  • Bonierbale MW, Plaisted RL, Tanksley SD (1988) RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095–1103

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bradshaw JE (2007) Potato-breeding strategy. In: Vreugdenhil D, Bradshaw J, Gebhardt C, Govers F, MacKerron DKL, Taylor MA, Ross HA (eds) Potato biology and biotechnology: advances and perspectives. Elsevier, Amsterdam, pp 157–177

    Chapter  Google Scholar 

  • Bradshaw JE (2017) Review and analysis of limitations in ways to improve conventional potato breeding. Potato Res 60:171–193

    Article  Google Scholar 

  • Bradshaw JE, Mackay GR (1994) Breeding strategies for clonally propagated potatoes. In: Bradshaw JE, Mackay GR (eds) Potato genetics. Cab International, Wallingford, pp 467–497

    Google Scholar 

  • Bradshaw JE, Dale MFB, Mackay GR (2003) Use of mid-parent values and progeny tests to increase the efficiency of potato breeding for combined processing quality and disease and pest resistance. Theor Appl Genet 107:36–42

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw JE, Hackett CA, Pande B, Waugh R, Bryan GJ (2008) QTL mapping of yield, agronomic and quality traits in tetraploid potato (Solanum tuberosum subsp. tuberosum). Theor Appl Genet 116:193–211

    Article  PubMed  Google Scholar 

  • Bradshaw JE, Dale MFB, Mackay GR (2009) Improving the yield, processing quality and disease and pest resistance of potatoes by genotypic recurrent selection. Euphytica 170:215–227

    Article  Google Scholar 

  • Brigneti G, Garcia-Mas J, Baulcombe DC (1997) Molecular mapping of the potato virus Y resistance gene Ry sto in potato. Theor Appl Genet 94:198–203

    Article  CAS  Google Scholar 

  • Brown J, Caligari PDS, Mackay GR, Swan GEL (1984) The efficiency of seedling selection by visual preference in a potato breeding programme. J Agric Sci 103:339–346

    Article  Google Scholar 

  • Brown J, Caligari PDS, Mackay GR, Swan GEL (1987) The efficiency of visual selection in early generations of a potato breeding programme. Ann Appl Biol 110:357–363

    Article  Google Scholar 

  • Brown J, Caligari PDS, Dale MFB, Swan GEL, Mackay GR (1988) The use of cross prediction methods in a practical potato breeding programme. Theor Appl Genet 76:33–38

    Article  PubMed  CAS  Google Scholar 

  • Brown CR, Corsini D, Pavek J, Thomas PE (1997) Heritability of field resistance to potato leafroll virus in cultivated potato. Plant Breed 116:585–588

    Article  Google Scholar 

  • Caligari PDS, Mackay GR, Stewart HE, Wastie RL (1984) A seedling progeny test for resistance to potato foliage blight (Phytophthora infestans (Mont.) de Bary). Potato Res 27:43–50

    Article  Google Scholar 

  • Caruana BM, Pembleton LW, Constable F, Rodoni B, Slater T, Cogan N (2017) GBS-transcriptomics for diversity and application of breeding traits in potato. 20th Triennial Conference of the European Association for Potato Research, 9–14 July 2017, Versailles, France

  • Chen X, Salamini F, Gebhardt C (2001) A potato molecular-function map for carbohydrate metabolism and transport. Theor Appl Genet 102:284–295

    Article  CAS  Google Scholar 

  • Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B 363:557–572

    Article  CAS  Google Scholar 

  • Collard B, Jahufer M, Brouwer J, Pang E (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Crossa J, Gdl C, Pérez P, Gianola D, Burgueño J, Araus JL, Makumbi D, Singh RP, Dreisigacker S, Yan J, Arief V, Banziger M, Braun H-J (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186:713–724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’hoop B, Paulo M, Kowitwanich K, Sengers M, Visser R, van Eck H, van Eeuwijk F (2010) Population structure and linkage disequilibrium unravelled in tetraploid potato. Theor Appl Genet 121:1151–1170

    Article  PubMed  PubMed Central  Google Scholar 

  • Daetwyler HD, Hickey JM, Henshall JM, Dominik S, Gredler B, van der Werf JHJ, Hayes BJ (2010) Accuracy of estimated genomic breeding values for wool and meat traits in a multi-breed sheep population. Anim Prod Sci 50:1004–1010

    Article  Google Scholar 

  • Dalla Rizza M, Vilaró F, Torres D, Maeso D (2006) Detection of PVY extreme resistance genes in potato germplasm from the Uruguayan breeding program. Am J Potato Res 83:297–304

    Article  CAS  Google Scholar 

  • De Koeyer D, Chen H, Gustafson V (2011) Molecular breeding for potato improvement. In: Bradeen J, Kole C (eds) Genetics, genomics and breeding of potato. Science Publishers, Enfield, pp 41–67

    Chapter  Google Scholar 

  • Endelman J, Carley CS (2017) Combining marker and pedigree information for genome-wide prediction in potato. 20th Triennial Conference of the European Association for Potato Research, 9–14 July 2017, Versailles, France

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4. Pearson, Prentice Hall, Harlow

  • Finkers-Tomczak A, Bakker E, de Boer J, van der Vossen E, Achenbach U, Golas T, Suryaningrat S, Smant G, Bakker J, Goverse A (2011) Comparative sequence analysis of the potato cyst nematode resistance locus H1 reveals a major lack of co-linearity between three haplotypes in potato (Solanum tuberosum ssp.). Theor Appl Genet 122:595–608

    Article  PubMed  Google Scholar 

  • Fischer RA, Edmeades GO (2010) Breeding and cereal yield progress. Crop Sci 50:S-85-S-98

  • Flis B, Wasilewicz-Flis I (1998) Progeny tests to identify diploid potato clones homozygous at loci controlling resistance to PLRV. Potato Res 41:219–228

    Article  Google Scholar 

  • Flis B, Hennig J, Strzelczyk-Zyta D, Gebhardt C, Marczewski W (2005) The Ry-f sto gene from Solanum stoloniferum for extreme resistant to Potato virus Y maps to potato chromosome XII and is diagnosed by PCR marker GP122718 in PVY resistant potato cultivars. Mol Breed 15:95–101

    Article  CAS  Google Scholar 

  • Furbank RT (2009) Plant phenomics: from gene to form and function. Funct Plant Biol 36:v–vi

    Article  Google Scholar 

  • Furbank RT, Tester M (2011) Phenomics—technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:635–644

    Article  PubMed  CAS  Google Scholar 

  • Gebhardt C (2013) Bridging the gap between genome analysis and precision breeding in potato. Trends Genet 29:248–256

    Article  PubMed  CAS  Google Scholar 

  • Gebhardt C, Valkonen JPT (2001) Organization of genes controlling disease resistance in the potato genome. Annu Rev Phytopathol 39:79–102

    Article  PubMed  CAS  Google Scholar 

  • Gebhardt C, Ritter E, Debener T, Schachtschabel U, Walkemeier B, Uhrig H, Salamini F (1989) RFLP analysis and linkage mapping in Solanum tuberosum. Theor Appl Genet 78:65–75

    Article  PubMed  CAS  Google Scholar 

  • Gebhardt C, Ritter E, Barone A, Debener T, Walkemeier B, Schachtschabel U, Kaufmann H, Thompson RD, Bonierbale MW, Ganal MW, Tanksley SD, Salamini F (1991) RFLP maps of potato and their alignment with the homoeologous tomato genome. Theor Appl Genet 83:49–57

    Article  PubMed  CAS  Google Scholar 

  • Gebhardt C, Lörz H, Wenzel G (2005) Potato genetics: molecular maps and more. Molecular marker systems in plant breeding and crop improvement. Springer, Berlin, pp 215–227

    Google Scholar 

  • Gebhardt C, Bellin D, Henselewski H, Lehmann W, Schwarzfischer J, Valkonen J (2006) Marker-assisted combination of major genes for pathogen resistance in potato. Theor Appl Genet 112:1458–1464

    Article  PubMed  CAS  Google Scholar 

  • Gebhardt C, Urbany C, Li L, Stich B, Paulo J, Draffehn A, Ballvora A (2011) Molecular diagnostics for complex pest and disease resistance and tuber quality traits: concept, achievements and perspectives. Potato Res 54:313–318

    Article  Google Scholar 

  • Gopal J, Gaur PC, Rana MS (1992) Early generation selection for agronomic characters in a potato breeding programme. Theor Appl Genet 84:709–713

    PubMed  CAS  Google Scholar 

  • Grattapaglia D, Vilela Resende MD, Resende MR, Sansaloni CP, Petroli CD, Missiaggia AA, Takahashi EK, Zamprogno KC, Kilian A (2011) Genomic selection for growth traits in Eucalyptus: accuracy within and across breeding populations. BMC Proc 5:1–2

    Article  Google Scholar 

  • Grube RC, Radwanski ER, Jahn M (2000) Comparative genetics of disease resistance within the solanaceae. Genetics 155:873–887

    PubMed  PubMed Central  CAS  Google Scholar 

  • Haverkort AJ, Boonekamp PM, Hutten R, Jacobsen E, Lotz LAP, Kessel GJT, Vossen JH, Visser RGF (2016) Durable late blight resistance in potato through dynamic varieties obtained by cisgenesis: scientific and societal advances in the DuRPh project. Potato Res 59:35–66

    Article  CAS  Google Scholar 

  • Hawkes JG (1990) The potato; evolution, biodiversity and genetic resources. Belhaven Press, London

    Google Scholar 

  • Henderson CR (1984) Applications of linear models in animal breeding. University of Guelph, Guelph

    Google Scholar 

  • Hijmans RJ, Spooner DM (2001) Geographic distribution of wild potato species. Am J Bot 88:2101–2112

    Article  PubMed  CAS  Google Scholar 

  • Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the next challenge. Nat Rev Genet 11:855–866

    Article  PubMed  CAS  Google Scholar 

  • Hutchison CA (2007) DNA sequencing: bench to bedside and beyond. Nucleic Acids Res 35:6227–6237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jansky S (2009) Breeding, genetics and cultivar development. In: Singh J, Kaur L (eds) Advances in potato chemistry and technology. Academic Press, New York, pp 27–62

    Chapter  Google Scholar 

  • Jansky SH, Spooner DM (2018) The evolution of potato breeding. In: Plant breeding reviews. Wiley, pp 169–214

  • Kaku M (2011) Physics of the future: the inventions that will transform our lives. Penguin Books, Camberwell

    Google Scholar 

  • Kanyuka K, Bendahmane A, van der Voort JNAMR, van der Vossen EAG, Baulcombe DC (1999) Mapping of intra-locus duplications and introgressed DNA: aids to map-based cloning of genes from complex genomes illustrated by physical analysis of the Rx locus in tetraploid potato. Theor Appl Genet 98:679–689

    Article  CAS  Google Scholar 

  • Kasai K, Morikawa Y, Sorri VA, Valkonen JP, Gebhardt C, Watanabe KN (2000) Development of SCAR markers to the PVY resistance gene Ry adg based on a common feature of plant disease resistance genes. Genome 43:1–8

    Article  PubMed  CAS  Google Scholar 

  • Kim C, Guo H, Kong W, Chandnani R, Shuang L-S, Paterson AH (2016) Application of genotyping by sequencing technology to a variety of crop breeding programs. Plant Sci 242:14–22

    Article  PubMed  CAS  Google Scholar 

  • Kloosterman B, Abelenda JA, Gomez MMC, Oortwijn M, de Boer JM, Kowitwanich K, Horvath BM, van Eck HJ, Smaczniak C, Prat S, Visser RGF, Bachem CWB (2013) Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature 495:246–250

    Article  PubMed  CAS  Google Scholar 

  • Leister D, Ballvora A, Salamini F, Gebhardt C (1996) A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat Genet 14:421–429

    Article  PubMed  CAS  Google Scholar 

  • Lin Z, Hayes BJ, Daetwyler HD (2014) Genomic selection in crops, trees and forages: a review. Crop Pasture Sci 65:1177–1191

    Article  Google Scholar 

  • Lindhout P, Meijer D, Schotte T, Hutten RCB, Visser RGF, van Eck HJ (2011) Towards F1 hybrid seed potato breeding. Potato Res 54:301–312

    Article  Google Scholar 

  • Love SL, Werner BK, Pavek JJ (1997) Selection for individual traits in the early generations of a potato breeding program dedicated to producing cultivars with tubers having long shape and russet skin. Am Potato J 74:199–213

    Article  Google Scholar 

  • Malmberg MM, Pembleton LW, Baillie RC, Drayton MC, Sudheesh S, Kaur S, Shinozuka H, Verma P, Spangenberg GC, Daetwyler HD, Forster JW, Cogan NOI (2017) Genotyping-by-sequencing through transcriptomics: implementation in a range of crop species with varying reproductive habits and ploidy levels. Plant Biotechnol J 16:877–889. https://doi.org/10.1111/pbi.12835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maris B (1986) The effect of seed tuber weight on characters in the first and the second clonal generation of potato populations. Euphytica 35:465–482

    Article  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  PubMed Central  CAS  Google Scholar 

  • Milbourne D, Byrne S, Meade F, Mesiti F, Griffin D (2017) Using genomic variants to predict fry colour in potato. 20th Triennial Conference of the European Association for Potato Research, 9–14 July 2017, Versailles, France

  • Milczarek D, Flis B, Przetakiewicz A (2011) Suitability of molecular markers for selection of potatoes resistant to Globodera spp. Am J Potato Res 88:245–255

    Article  CAS  Google Scholar 

  • Milczarek DPA, Kamiński P, Flis B (2014) Early selection of potato clones with the H1 resistance gene—the relation of nematode resistance to quality characteristics. Czech J Genet Plant Breed 50:278–284

    Article  Google Scholar 

  • Mochida K, Shinozaki K (2011) Advances in omics and bioinformatics tools for systems analyses of plant functions. Plant Cell Physiol 52:2017–2038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moloney C, Griffin D, Jones P, Bryan G, McLean K, Bradshaw J, Milbourne D (2010) Development of diagnostic markers for use in breeding potatoes resistant to Globodera pallida pathotype Pa2/3 using germplasm derived from Solanum tuberosum ssp. andigena CPC 2802. Theor Appl Genet 120:679–689

    Article  PubMed  CAS  Google Scholar 

  • Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neele AEF, Louwes KM (1989) Early selection for chip quality and dry matter content in potato seedling populations in greenhouse or screenhouse. Potato Res 32:293–300

    Article  Google Scholar 

  • Ottoman R, Hane D, Brown C, Yilma S, James S, Mosley A, Crosslin J, Vales M (2009) Validation and implementation of marker-assisted selection (MAS) for PVY resistance (Ry adg gene) in a tetraploid potato breeding program. Am J Potato Res 86:304–314

    Article  Google Scholar 

  • Park J, Yang H, De Jong WS, Wang X (2017) An evaluation of two H1-linked markers and their suitability for selecting Globodera rostochiensis resistant potatoes in the New York breeding program. Am J Potato Res on-line 22 December 2017

  • Phillips MS (1981) A method of assessing potato seedling progenies for resistance to the white potato cyst nematode. Potato Res 24:101–103

    Article  Google Scholar 

  • Resende MFR, Muñoz P, Resende MDV, Garrick DJ, Fernando RL, Davis JM, Jokela EJ, Martin TA, Peter GF, Kirst M (2012) Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.). Genetics 190:1503–1510

    Article  PubMed  PubMed Central  Google Scholar 

  • Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F, Sulpice R, Altmann T, Stitt M, Willmitzer L, Melchinger AE (2012) Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet 44:217–220

    Article  PubMed  CAS  Google Scholar 

  • Ritter E, Debener T, Barone A, Salamini F, Gebhardt C (1991) RFLP mapping on potato chromosomes of two genes controlling extreme resistance to potato virus X (PVX). Mol Gen Genet 227:81–85

    Article  PubMed  CAS  Google Scholar 

  • Ruiz De Galarreta JI, Ezpeleta B, Pascualena J, Ritter E (2006) Combining ability and correlations for yield components in early generations of potato breeding. Plant Breed 125:183–186

    Article  Google Scholar 

  • Schultz L, Cogan NOI, Forster JW, Slater AT (2010) Evaluation and optimisation of the TG689 marker linked to PCN resistance. Potato Res 53:247–248

    Google Scholar 

  • Schultz L, Cogan NOI, McLean K, Dale MFB, Bryan GJ, Forster JW, Slater AT (2012) Evaluation and implementation of a potential diagnostic molecular marker for H1-conferred potato cyst nematode resistance in potato (Solanum tuberosum L.). Plant Breed 131:315–321

    Article  CAS  Google Scholar 

  • Selga C, Reslow F, Andersson M, Ortiz R (2017) Genomic estimated breeding value approach for selection in potato. 20th Triennial Conference of the European Association for Potato Research, 9–14 July 2017, Versailles, France

  • Simko I, Jansky S, Stephenson S, Spooner DM (2007) Genetics of resistance to pests and diseases. In: Vreugdenhil D, Bradshaw J, Gebhardt C, Govers F, MacKerron DKL, Taylor MA, Ross HA (eds) Potato biology and biotechnology: advances and perspectives. Elsevier, Amsterdam, pp 117–155

    Chapter  Google Scholar 

  • Slater AT (2013) Molecular and quantitative genetic studies for potato germplasm enhancement (PhD Thesis). La Trobe University, Bundoora, Australia

  • Slater T, Wilson G, Schultz L, Cogan N, Forster J, Verstraten M (2011) National potato breeding program trials 2009/2010. Department of Primary Industries, Knoxfield

    Google Scholar 

  • Slater T, Forster J, Cogan N, Schultz L, Lombardi M, Hayes B, Rodoni B, Milinkovic M, Zheng L, Wilson G, Verstraten M (2012a) National potato breeding program: strategic trait development. Project No. PT08033. Final Report for Horticulture Australia., p 80

  • Slater T, Wilson G, Verstraten M (2012b) National potato breeding program: Cultivar improvement. Project No. PT07017. Final Report for Horticulture Australia

  • Slater AT, Cogan NOI, Forster JW (2013) Cost analysis of the application of marker-assisted selection in potato breeding. Mol Breed 32:299–310

    Article  Google Scholar 

  • Slater AT, Cogan NOI, Hayes BJ, Schultz L, Dale MFB, Bryan GJ, Forster JW (2014a) Improving breeding efficiency in potato using molecular and quantitative genetics. Theor Appl Genet 127:2279–2292

    Article  PubMed  Google Scholar 

  • Slater AT, Wilson GM, Cogan NOI, Forster JW, Hayes BJ (2014b) Improving the analysis of low heritability complex traits for enhanced genetic gain in potato. Theor Appl Genet 127:809–820

    Article  PubMed  CAS  Google Scholar 

  • Slater AT, Cogan NOI, Forster JW, Hayes BJ, Daetwyler HD (2016) Improving genetic gain with genomic selection in autotetraploid potato. Plant Genome 9

  • Song Y-S, Hepting L, Schweizer G, Hartl L, Wenzel G, Schwarzfischer A (2005) Mapping of extreme resistance to PVY (Ry sto) on chromosome XII using anther-culture-derived primary dihaploid potato lines. Theor Appl Genet 111:879–887

    Article  PubMed  CAS  Google Scholar 

  • Stich B, Van Inghelandt D (2018) Prospects and potential uses of genomic prediction of key performance traits in tetraploid potato. Front Plant Sci 9

  • Sverrisdóttir E, Byrne S, Sundmark EHR, Johnsen HØ, Kirk HG, Asp T, Janss L, Nielsen KL (2017) Genomic prediction of starch content and chipping quality in tetraploid potato using genotyping-by-sequencing. Theor Appl Genet 130:2091–2108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tai G, Young D (1984) Early generation selection for important agronomic characteristics in a potato breeding population. Am J Potato Res 61:419–434

    Article  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB et al (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    PubMed  PubMed Central  CAS  Google Scholar 

  • Valkonen JPT, Wiegmann K, Hämäläinen JH, Marczewski W, Watanabe KN (2008) Evidence for utility of the same PCR-based markers for selection of extreme resistance to potato virus Y controlled by Ry sto of Solanum stoloniferum derived from different sources. Ann Appl Biol 152:121–130

    Article  CAS  Google Scholar 

  • van Eck HJ (2007) Genetics of morphological and tuber traits. In: Vreugdenhil D, Bradshaw J, Gebhardt C, Govers F, MacKerron DKL, Taylor MA, Ross HA (eds) Potato biology and biotechnology: advances and perspectives. Elsevier, Amsterdam, pp 91–115

    Google Scholar 

  • Van Os H, Andrzejewski S, Bakker E, Barrena I, Bryan GJ, Caromel B, Ghareeb B, Isidore E, De Jong W, Van Koert P, Lefebvre V, Milbourne D, Ritter E, Rouppe Van Der Voort JNAM, Rousselle-Bourgeois F, Van Vliet J, Waugh R, Visser RGF, Bakker J, Van Eck HJ (2006) Construction of a 10,000-marker ultradense genetic recombination map of potato: providing a framework for accelerated gene isolation and a genomewide physical map. Genetics 173:1075–1087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • VanRaden PM, Van Tassell CP, Wiggans GR, Sonstegard TS, Schnabel RD, Taylor JF, Schenkel FS (2009) Invited review: reliability of genomic predictions for North American Holstein bulls. J Dairy Sci 92:16–24

    Article  PubMed  CAS  Google Scholar 

  • Vos PG, Paulo MJ, Voorrips RE, Visser RGF, van Eck HJ, van Eeuwijk FA (2017) Evaluation of LD decay and various LD-decay estimators in simulated and SNP-array data of tetraploid potato. Theor Appl Genet 130:123–135

    Article  PubMed  Google Scholar 

  • Wastie RL (1991) Resistance to powdery scab of seedling progenies of Solanum tuberosum. Potato Res 34:249–252

    Article  Google Scholar 

  • Wastie RL, Bradshaw JE (1996) Comparison of resistance to Fusarium spp. of glasshouse- and field-grown tuber progenies of potato. Potato Res 38:345–351

    Article  Google Scholar 

  • Wastie RL, Caligari PDS, Stewart HE, Mackay GR (1988) Assessing the resistance to gangrene of progenies of potato (Solanum tuberosum L.) from parents differing in susceptibility. Potato Res 31:355–365

    Article  Google Scholar 

  • Wiggans GR, Vanraden PM, Cooper TA (2011) The genomic evaluation system in the United States: past, present, future. J Dairy Sci 94:3202–3211

    Article  PubMed  CAS  Google Scholar 

  • Witek K, Strzelczyk-Żyta D, Hennig J, Marczewski W (2006) A multiplex PCR approach to simultaneously genotype potato towards the resistance alleles Ry-f sto and Ns. Mol Breed 18:273–275

    Article  CAS  Google Scholar 

  • Wolc A, Stricker C, Arango J, Settar P, Fulton J, O’Sullivan N, Preisinger R, Habier D, Fernando R, Garrick D, Lamont S, Dekkers J (2011) Breeding value prediction for production traits in layer chickens using pedigree or genomic relationships in a reduced animal model. Genet Sel Evol 43:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolc A, Zhao H, Arango J, Settar P, Fulton J, O’Sullivan N, Preisinger R, Stricker C, Habier D, Fernando R, Garrick D, Lamont S, Dekkers J (2015) Response and inbreeding from a genomic selection experiment in layer chickens. Genet Sel Evol 47:59

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong X, Tai GCC, Seabrook JEA (2002) Effectiveness of selection for quality traits during the early stage in the potato breeding population. Plant Breed 121:441–444

    Article  Google Scholar 

  • Xu Y, Lu Y, Xie C, Gao S, Wan J, Prasanna B (2012) Whole-genome strategies for marker-assisted plant breeding. Mol Breed 29:833–854

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Graeme Wilson, Mark Verstraten, Lee Schultz, Maria Lombardi, Mirko Milinkovic, Chris Bottcher, Linda Zheng and Rob Faggian for their input into the trials. We also thank Andrew Powell and Phil Keane from La Trobe University and Finlay Dale, Glenn Bryan and Karen McLean from the James Hutton Institute.

Funding

This work was supported by funding from Hort Innovation Australia and the Victorian Department of Economic Development, Jobs, Transport and Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony T. Slater.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slater, A.T., Cogan, N.O.I., Rodoni, B.C. et al. Breeding Differently—the Digital Revolution: High-Throughput Phenotyping and Genotyping. Potato Res. 60, 337–352 (2017). https://doi.org/10.1007/s11540-018-9388-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11540-018-9388-x

Keywords

Navigation