Skip to main content
Log in

Terahertz Optical Ultrasensitive Glucose Detection Using Graphene and Silver Surface Plasmon Resonance Metasurfaces for Biomedical Applications

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Biomedical sensing applications can leverage the non-invasive and label-free characteristics of terahertz (THz) spectroscopy. In this research, we propose a biosensor that employs THz waves for highly sensitive detection of urine glucose levels. The biosensor incorporates a metasurface composed of graphene and silver, capitalizing on their complementary effects to enhance sensing performance. The proposed sensor design demonstrates unprecedented performance with an optimal sensitivity of 1000 GHz/RIU. Furthermore, a well-established linear fitting curve yields somewhat satisfactory R2 scores of 0.84198 and 0.8381 for distinct aspects of the sensor’s performance. Notably, the sensor exhibits exceptional metrics, with the lowest figure of merit (FOM) value recorded at 0.393 RIU−1. These remarkable aspects collectively highlight the sensor’s advanced capabilities, positioning it as a promising tool for medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

The data supporting the findings in this work are available from the corresponding author with a reasonable request.

References

  1. Yang X et al (2016) Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol 34(10):810–824. https://doi.org/10.1016/j.tibtech.2016.04.008

    Article  CAS  PubMed  Google Scholar 

  2. Patel SK, Wekalao J, Albargi HB, Jalalah M, Almawgani AHM (2024) Design and simulation of metasurface ‑ enhanced graphene biosensors for cancer biomarker detection. Plasmonics 0123456789. https://doi.org/10.1007/s11468-024-02224-5

  3. Heidrich L, Abdelkader A, Ornik J, Castro-Camus E, Keck CM, Koch M (2023) Terahertz spectroscopy for non-destructive solid-state investigation of norfloxacin in paper tablets after wet granulation. Pharmaceutics 15(7). https://doi.org/10.3390/pharmaceutics15071786

  4. Wang et al (2023) The collective vibrational modes of dihydropyridine in nifedipine studied by terahertz spectroscopy. Spectrochim Acta Part A Mol Biomol Spectrosc 292. https://doi.org/10.1016/j.saa.2023.122404

  5. Artesani A, Lamuraglia R, Menegazzo F, Bonetti S, Traviglia A (2023) Terahertz time-domain spectroscopy in reflection configuration for inorganic and mineral pigment identification. Appl Spectrosc 77(1):74–87. https://doi.org/10.1177/00037028221133404

    Article  CAS  PubMed  Google Scholar 

  6. Lu P-K, Jarrahi M (2023) Frequency-domain terahertz spectroscopy using long-carrier-lifetime photoconductive antennas. Opt Express 31(6):9319. https://doi.org/10.1364/oe.483746

    Article  CAS  PubMed  Google Scholar 

  7. Wu X et al (2023) Biomedical applications of terahertz spectra in clinical and molecular pathology of human glioma. Spectrochim Acta Part A Mol Biomol Spectrosc 285. https://doi.org/10.1016/j.saa.2022.121933

  8. Tian H, Huang G, Xie F, Fu W, Yang X (2023) THz biosensing applications for clinical laboratories: bottlenecks and strategies. TrAC TrAC Trends Anal Chem 163. https://doi.org/10.1016/j.trac.2023.117057

  9. Jana S, Mukherjee S, Bhaktha BNS, Ray SK (2022) Plasmonic silver nanoparticle-mediated enhanced broadband photoresponse of few-layer phosphorene/Si vertical heterojunctions. ACS Appl Mater Interfaces 14(1):1699–1709. https://doi.org/10.1021/acsami.1c19309

    Article  CAS  PubMed  Google Scholar 

  10. Adrianto N, Panre AM, Istiqomah NI, Riswan M, Apriliani F, Suharyadi E (2022) Localized surface plasmon resonance properties of green synthesized silver nanoparticles. Nano-Structures and Nano-Objects 31. https://doi.org/10.1016/j.nanoso.2022.100895

  11. Zhu X, Zhang J, Yang C, Li Y, Chen Y (2023) Evolutionary plasmonic properties of single truncated Ag nanowire-on-Au film nanocavity. Chinese Phys Lett 40(5). https://doi.org/10.1088/0256-307X/40/5/057801

  12. Karawdeniya BI et al (2022) Surface functionalization and texturing of optical metasurfaces for sensing applications. Chem Rev 122(19):14990–15030. https://doi.org/10.1021/acs.chemrev.1c00990

    Article  CAS  PubMed  Google Scholar 

  13. Dadadzhanov DR, Gladskikh IA, Baranov MA, Vartanyan TA, Karabchevsky A (2021) Self-organized plasmonic metasurfaces: the role of the Purcell effect in metal-enhanced chemiluminescence (MEC). Sensors Actuators B Chem 333. https://doi.org/10.1016/j.snb.2021.129453

  14. Md Shakhih MF, Rosslan AS, Noor AM, Ramanathan S, Lazim AM, Wahab AA (2021) Review-enzymatic and non-enzymatic electrochemical sensor for lactate detection in human biofluids. J Electrochem Soc 168(6):067502. https://doi.org/10.1149/1945-7111/ac0360

    Article  CAS  Google Scholar 

  15. Wang T-T, Huang X-F, Huang H, Luo P, Qing L-S (2022) Nanomaterial-based optical- and electrochemical-biosensors for urine glucose detection: a comprehensive review. Adv Sens Energy Mater 1(3):100016. https://doi.org/10.1016/j.asems.2022.100016

    Article  Google Scholar 

  16. Ahmed I et al (2022) Recent advances in optical sensors for continuous glucose monitoring. Sensors and Diagnostics 1(6):1098–1125. https://doi.org/10.1039/d1sd00030f

    Article  CAS  Google Scholar 

  17. Rohilla D, Chaudhary S, Umar A (2021) An overview of advanced nanomaterials for sensor applications. Eng Sci 16:47–70. https://doi.org/10.30919/es8d552

    Article  CAS  Google Scholar 

  18. Wekalao J et al (2023) Graphene-based THz surface plasmon resonance biosensor for hemoglobin detection applicable in forensic science. Plasmonics. https://doi.org/10.1007/s11468-023-02146-8

    Article  Google Scholar 

  19. Sharma S, Prakash V, Mehta SK (2017) Graphene/silver nanocomposites-potential electron mediators for proliferation in electrochemical sensing and SERS activity. TrAC - Trends in Analytical Chemistry 86:155–171. https://doi.org/10.1016/j.trac.2016.10.004

    Article  CAS  Google Scholar 

  20. Demon SZN et al (2020) Graphene-based materials in gas sensor applications: a review. Sensors and Materials 32(2):759–777. https://doi.org/10.18494/SAM.2020.2492

    Article  CAS  Google Scholar 

  21. Shi G et al (2019) A multifunctional wearable device with a graphene/silver nanowire nanocomposite for highly sensitive strain sensing and drug delivery. C 5(2):17. https://doi.org/10.3390/c5020017

    Article  CAS  Google Scholar 

  22. Wang H et al (2023) Recent progress in terahertz biosensors based on artificial electromagnetic subwavelength structure. TrAC Trends Anal Chem 158. https://doi.org/10.1016/j.trac.2022.116888

  23. Tseng ML, Jahani Y, Leitis A, Altug H (2021) Dielectric metasurfaces enabling advanced optical biosensors. ACS Photonics 8(1):47–60. https://doi.org/10.1021/acsphotonics.0c01030

    Article  CAS  Google Scholar 

  24. Patel SK et al (2020) Design of graphene metasurface based sensitive infrared biosensor. Sensors Actuators A Phys 301. https://doi.org/10.1016/j.sna.2019.111767

  25. Wang Z et al (2022) Plasmonic metasurfaces for medical diagnosis applications: a review. Sensors 22(1). https://doi.org/10.3390/s22010133

  26. Wang J, Du J (2016) Plasmonic and dielectric metasurfaces: design, fabrication and applications. Appl Sci (Switzerland) 6(9). https://doi.org/10.3390/app6090239

  27. Ahmed R et al (2020) Tunable fano-resonant metasurfaces on a disposable plastic-template for multimodal and multiplex biosensing. Adv Mater 32(19). https://doi.org/10.1002/adma.201907160

  28. Wekalao J, Alsalman O, Natraj NA, Surve J, Parmar J, Patel SK (2023) Design of graphene metasurface sensor for efficient detection of COVID-19. Plasmonics. https://doi.org/10.1007/s11468-023-01946-2

    Article  Google Scholar 

  29. Rokaya D, Srimaneepong V, Qin J, Thunyakitpisal P, Siraleartmukul K (2019) Surface adhesion properties and cytotoxicity of graphene oxide coatings and graphene oxide/silver nanocomposite coatings on biomedical NiTi alloy. Sci Adv Mater 11(10):1474–1487. https://doi.org/10.1166/sam.2019.3536

    Article  CAS  Google Scholar 

  30. Skoda M, Dudek I, Jarosz A, Szukiewicz D (2014) Graphene: one material, many possibilities - application difficulties in biological systems. J Nanomater 2014. https://doi.org/10.1155/2014/890246

  31. Vishwanath R, Negi B (2021) Conventional and green methods of synthesis of silver nanoparticles and their antimicrobial properties. Curr Res Green Sustain Chem 4. https://doi.org/10.1016/j.crgsc.2021.100205

  32. Mao HY, Lu YH, Lin JD, Zhong S, Wee ATS, Chen W (2013) Manipulating the electronic and chemical properties of graphene via molecular functionalization. Prog Surf Sci 88(2):132–159. https://doi.org/10.1016/j.progsurf.2013.02.001

    Article  CAS  Google Scholar 

  33. Li X, Zhi L (2018) Graphene hybridization for energy storage applications. Chem Soc Rev 47(9):3189–3216. https://doi.org/10.1039/c7cs00871f

    Article  CAS  PubMed  Google Scholar 

  34. Mohan VB, Lau KT, Hui D, Bhattacharyya D (2018) Graphene-based materials and their composites: a review on production, applications and product limitations. Compos B Eng 142:200–220. https://doi.org/10.1016/j.compositesb.2018.01.013

    Article  CAS  Google Scholar 

  35. Tiwari SK, Sahoo S, Wang N, Huczko A (2020) Graphene research and their outputs: status and prospect. Journal of Science: Advanced Materials and Devices. https://doi.org/10.1016/j.jsamd.2020.01.006

    Article  Google Scholar 

  36. Nguyen Bich H, Nguyen Van H (2016) Promising applications of graphene and graphene-based nanostructures. Adv Nat Sci Nanosci Nanotechno 7(2). https://doi.org/10.1088/2043-6262/7/2/023002

  37. Ahmad F et al (2023) Advances in graphene-based electrode materials for high-performance supercapacitors: a review. J Energy Storage 72. https://doi.org/10.1016/j.est.2023.108731

  38. Obayomi KS et al (2023) Recent advances in graphene-derived materials for biomedical waste treatment. J Water Process Eng 51. https://doi.org/10.1016/j.jwpe.2022.103440

  39. Ray R (2012) Eigenstate analysis of finite-frequency conductivity in graphene. Eur Phys J B 85(10). https://doi.org/10.1140/epjb/e2012-20885-8

  40. Wekalao J, Patel SK, Anushkannan NK, Alsalman O, Surve J, Parmar J (2023) Design of ring and cross shaped graphene metasurface sensor for efficient detection of malaria and 2 bit encoding applications. Diam Relat Mater 139(August):110401. https://doi.org/10.1016/j.diamond.2023.110401

    Article  CAS  Google Scholar 

  41. Patel SK, Wekalao J, Alsalman O, Surve J, Parmar J, Taya SA (2023) Development of surface plasmon resonance sensor with enhanced sensitivity for low refractive index detection. Opt Quantum Electron 55(11). https://doi.org/10.1007/s11082-023-05265-y

  42. Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103(6). https://doi.org/10.1063/1.2891452

  43. Aliqab K, Wekalao J, Alsharari M, Armghan A, Agravat D, Patel SK (2023) Designing a graphene metasurface organic material sensor for detection of organic compounds in wastewater. Biosensors 13(8):1–16. https://doi.org/10.3390/bios13080759

    Article  CAS  Google Scholar 

  44. Dragoman M, Dragoman D (2008) Plasmonics: applications to nanoscale terahertz and optical devices. Prog Quantum Electron 32(1):1–41. https://doi.org/10.1016/j.pquantelec.2007.11.001

    Article  CAS  Google Scholar 

  45. Cao W et al (2013) Tailoring terahertz plasmons with silver nanorod arrays. Sci Rep 3. https://doi.org/10.1038/srep01766

  46. Cao XL, Cheng C, Ma YL, Zhao CS (2010) Preparation of silver nanoparticles with antimicrobial activities and the researches of their biocompatibilities. J Mater Sci Mater Med 21(10):2861–2868. https://doi.org/10.1007/s10856-010-4133-2

    Article  CAS  PubMed  Google Scholar 

  47. Jalil AT et al (2021) High-sensitivity biosensor based on glass resonance PhC cavities for detection of blood component and glucose concentration in human urine. Coatings  11(12). https://doi.org/10.3390/coatings11121555

  48. Yadav A, Mishra M, Tripathy SK, Kumar A, Singh OP, Sharan P (2023) Improved surface plasmon effect in Ag-based SPR biosensor with graphene and WS2: an approach towards low cost urine-glucose detection. Plasmonics. https://doi.org/10.1007/s11468-023-01945-3

    Article  PubMed  PubMed Central  Google Scholar 

  49. Patel SK, Parmar J, Sorathiya V, Zakaria R, Dhasarathan V, Nguyen TK (2021) Graphene-based plasmonic absorber for biosensing applications using gold split ring resonator metasurfaces. J Light Technol. https://doi.org/10.1109/JLT.2021.3069758

    Article  Google Scholar 

  50. Li F et al (2020) The terahertz metamaterials for sensitive biosensors in the detection of ethanol solutions. Opt Commun. https://doi.org/10.1016/j.optcom.2020.126287

    Article  Google Scholar 

  51. Geng Z, Zhang X, Fan Z, Lv X, Chen H (2017) A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage. Sci Rep. https://doi.org/10.1038/s41598-017-16762-y

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wekalao J, Patel SK, Alsalman O, Surve J, Anushkannan NK, Parmar J (2023) Waterborne bacteria detecting highly sensitive graphene metasurface based cost-efficient and efficient refractive index sensors. Plasmonics 0123456789. https://doi.org/10.1007/s11468-023-01983-x

  53. Terahertz Devices, Circuits and Systems (2022)

  54. Wan M, Yuan S, Dai K, Song Y, Zhou F (2015) Electromagnetically induced transparency in a planar complementary metamaterial and its sensing performance. Optik (Stuttg) 126(5):541–544. https://doi.org/10.1016/j.ijleo.2015.01.006

    Article  CAS  Google Scholar 

  55. Surve J, Jadeja R, Parmar T, Parmar J, Parmar J (2022) A terahertz-based graphene metasurface sensor for hemoglobin detection with high Q factor and low figure of merit. In Terahertz Devices, Circuits and Systems: Materials, Methods and Applications, pp. 41–51

  56. Singh R, Cao W, Al-Naib I, Cong L, Withayachumnankul W, Zhang W (2014) Ultrasensitive terahertz sensing with high- Q Fano resonances in metasurfaces. Appl Phys Lett 105(17). https://doi.org/10.1063/1.4895595

  57. Olyaee S, Najafgholinezhad S, Alipour Banaei H (2013) Four-channel label-free photonic crystal biosensor using nanocavity resonators. Photonic Sensors 3(3):231–236. https://doi.org/10.1007/s13320-013-0110-y

    Article  CAS  Google Scholar 

  58. Yahiaoui R, Tan S, Cong L, Singh R, Yan F, Zhang W (2015) Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber. J Appl Phys 118(8). https://doi.org/10.1063/1.4929449

  59. Wang Z, Geng Z, Fang W (2020) Exploring performance of THz metamaterial biosensor based on flexible thin-film. Opt Express 28(18):26370. https://doi.org/10.1364/oe.402222

    Article  CAS  PubMed  Google Scholar 

  60. Aly AH, Mohamed D, Mohaseb MA, El-Gawaad NSA, Trabelsi Y (2020) Biophotonic sensor for the detection of creatinine concentration in blood serum based on 1D photonic crystal. RSC Adv 10(53):31765–31772. https://doi.org/10.1039/D0RA05448H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors received funding from the Deanship of Scientific Research at Najran University under the Research Groups Funding Program grant code (NU/RG/SERC/12/4).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, H.B.A.and J.W; methodology, J.W, H.B.A, S.K.P software, J.W, S.K.P and H.B.A investigation, M.J., A.H.M.A., and A.A; Formal Analysis, M.J., A.H.M.A., R.M and A.A; writing—original draft preparation, All authors; writing—review and editing, All Authors.;; All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Hasan B. Albargi or Shobhit K. Patel.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wekalao, J., Albargi, H.B., Patel, S.K. et al. Terahertz Optical Ultrasensitive Glucose Detection Using Graphene and Silver Surface Plasmon Resonance Metasurfaces for Biomedical Applications. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02278-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02278-5

Keywords

Navigation