Skip to main content
Log in

Design of Graphene Metasurface Sensor for Efficient Detection of COVID-19

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The COVID-19 pandemic has underscored the essential need for quick and precise virus detection techniques, to stop the virus from spreading. In this paper, we have proposed a brand-new graphene metasurface sensor for effective COVID-19 detection. We have used graphene metasurfaces to increase the sensitivity of the proposed sensor. The suggested sensor architecture takes advantage of the plasmonic characteristics of graphene metasurfaces to enable the detection of particular COVID-19-related biomarkers. Strong light-graphene interactions are achieved through careful tailoring of the graphene metasurface geometry, resulting in improved sensing capabilities. The suggested graphene metasurface sensor has a number of benefits, including its small size, low cost, and ability to work with current detecting systems. Additionally, its label-free detection methodology does away with the need for laborious sample preparation stages, enabling quick on-site testing. The sensor's performance is compared to current state-of-the-art detection techniques in order to demonstrate its higher sensitivity and effectiveness. The sensor achieves a maximum sensitivity of sensitivity of 600 GHz/RIU and an excellent FOM value of 4.959 RIU−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

The data supporting the findings in this work are available from the corresponding author with a reasonable request.

References

  1. Mohanty SK et al (2020) Severe acute respiratory syndrome disease 19 ( COVID-19) – anatomic pathology perspective on current knowledge. Diagn Pathol 15(1):103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Radbel J, Narayanan N, Bhatt PJ (2020) Use of Tocilizumab for COVID-19-Induced Cytokine Release Syndrome: A Cautionary Case Report. Chest 158(1):e15–e19. https://doi.org/10.1016/j.chest.2020.04.024

    Article  CAS  PubMed  Google Scholar 

  3. Borak J (2020) Airborne Transmission of COVID-19. Occup Med 70(5):297–299. https://doi.org/10.1093/occmed/kqaa080

    Article  Google Scholar 

  4. World Health Organization (WHO) (2020) Getting your workplace ready for COVID-19. World Heal Organ [Internet] 1-8

  5. Guo JW, Radloff CL, Wawrzynski SE, Cloyes KG (2020) Mining twitter to explore the emergence of COVID-19 symptoms. Public Health Nurs 37(6):934–940. https://doi.org/10.1111/phn.12809

    Article  PubMed  PubMed Central  Google Scholar 

  6. Aiyegbusi OL et al (2021) Symptoms, complications and management of long COVID: a review. J R Soc Med 114(9):428–442. https://doi.org/10.1177/01410768211032850

    Article  PubMed  PubMed Central  Google Scholar 

  7. Patel SK, Surve J, Parmar J, Ahmed K, Bui FM, Al-Zahrani FA (2022) Recent Advances in Biosensors for Detection of COVID-19 and Other Viruses. IEEE Rev Biomed Eng 1–16. https://doi.org/10.1109/RBME.2022.3212038

  8. Tan C, Fan D, Wang N, Wang F, Wang B, Zhu L, Guo Y (2021) Applications of digital PCR in COVID‐19 pandemic. View 2(2):20200082. https://doi.org/10.1002/VIW.20200082

  9. Ponce-Rojas JC et al (2021) A fast and accessible method for the isolation of RNA, DNA, and Protein to Facilitate the Detection of SARS-CoV-2. J Clin Microbiol 59(4). https://doi.org/10.1128/JCM.02403-20

  10. Feng W et al (2020) Molecular Diagnosis of COVID-19: Challenges and Research Needs. Anal Chem 92(15):10196–10209. https://doi.org/10.1021/acs.analchem.0c02060

    Article  CAS  PubMed  Google Scholar 

  11. Soler M, Estevez MC, Cardenosa-Rubio M, Astua A, Lechuga LM (2020) How Nanophotonic Label-Free Biosensors Can Contribute to Rapid and Massive Diagnostics of Respiratory Virus Infections: COVID-19 Case. ACS Sensors 5(9):2663–2678. https://doi.org/10.1021/acssensors.0c01180

    Article  CAS  PubMed  Google Scholar 

  12. Naikoo GA et al (2022) Nanomaterials-based sensors for the detection of COVID-19: A review. Bioeng Translation Med 7(3). https://doi.org/10.1002/btm2.10305

  13. Mencacci A et al (2021) Role of nucleocapsid protein antigen detection for safe end of isolation of sars-cov-2 infected patients with long persistence of viral rna in respiratory samples. J Clin Med 10(18). https://doi.org/10.3390/jcm10184037

  14. Pavia CS, Plummer MM (2021) Review Article The evolution of rapid antigen detection systems and their application for COVID-19 and other serious respiratory infectious diseases. J Microbiol Immunol Infect 54(5):776–786

    Article  Google Scholar 

  15. Abbasi J (2020) The Promise and Peril of Antibody Testing for COVID-19. JAMA - Journal of the American Medical Association 323(19):1881–1883. https://doi.org/10.1001/jama.2020.6170

    Article  PubMed  Google Scholar 

  16. Mahajan A, Manchikanti L (2020) Value and validity of coronavirus antibody testing. Pain Physician 23(4):S381–S390. https://doi.org/10.36076/ppj.2020/23/s381

  17. Cui D, Chen X, and Wang Y (2010) Detection of SARS-CoV Antigen via SPR Analytical Systems with Reference. in Biosensors

  18. Akib TBA et al (2021) Design and numerical analysis of a graphene-coated spr biosensor for rapid detection of the novel coronavirus. Sensors 21(10). https://doi.org/10.3390/s21103491

  19. Paul BK, Ahmed K, Aktar MN (2020) Carbon disulphide (CS 2) enriched photonic crystal fiber for nonlinear application: a FEM scheme. Opt Quantum Electron 52(5). https://doi.org/10.1007/s11082-020-02363-z

  20. Peng L, Shi F, Zhou G, Ge S, Hou Z, Xia C (2015) A Surface Plasmon Biosensor Based on a D-Shaped Microstructured Optical Fiber With Rectangular Lattice. IEEE Photonics J 7(5). https://doi.org/10.1109/JPHOT.2015.2488278

  21. Balamurugan AM, Parvin T, Alsalem KAJ, Ibrahim SM (2023) Refractive index based optically transparent biosensor device design for early detection of coronavirus. Opt Quantum Electron 55(6):1–16. https://doi.org/10.1007/s11082-023-04788-8

    Article  CAS  Google Scholar 

  22. Razaq A, Bibi F, Zheng X, Papadakis R, Jafri SHM, Li H (2022) Review on Graphene-, Graphene Oxide-, Reduced Graphene Oxide-Based Flexible Composites: From Fabrication to Applications. Mater 15(3). https://doi.org/10.3390/ma15031012

  23. Hu J, Bandyopadhyay S, Liu YH, Shao LY (2021) A Review on Metasurface: From Principle to Smart Metadevices. Front Phys 8. https://doi.org/10.3389/fphy.2020.586087

  24. Li J et al (2020) Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging. Carbon N Y 163:34–42. https://doi.org/10.1016/j.carbon.2020.03.019

    Article  CAS  Google Scholar 

  25. Wang D, He X, Yang B, Jiang J, Yao Y, LV G (2022) Active wavefronts control with graphene-functionalized terahertz Metasurfaces. Diam Relat Mater 124. https://doi.org/10.1016/j.diamond.2022.108919

  26. Zeng B et al (2018) Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light Sci Appl 7(1). https://doi.org/10.1038/s41377-018-0055-4

  27. Farmani H, Farmani A (2020) Graphene sensing nanostructure for exact graphene layers identification at terahertz frequency. Phys E Low-Dimension Syst Nano 124. https://doi.org/10.1016/j.physe.2020.114375

  28. Surve J, Patel SK, Parmar J (2022) Design of Cost-Efficient Graphene Metasurface based Pregnancy Test with NOR Gate Realization and Parametric Optimization. IEEE Sens J 1–1. https://doi.org/10.1109/JSEN.2022.3218797

  29. Patel SK, Surve J, Htay MM, Alsalman O, Parmar J, Nguyen TK (2023) Graphene Metasurface Inspired Cyanide Detecting Sensor with Encoding capabilities of Two, Three, and Four Bits. IEEE Sens J 1–1. https://doi.org/10.1109/JSEN.2023.3265673

  30. Rezaei MH, Boroumandi R, Zarifkar A, Farmani A (2020) Nano-scale multifunctional logic gate based on graphene/hexagonal boron nitride plasmonic waveguides. IET Optoelectron 14(1):37–43. https://doi.org/10.1049/iet-opt.2019.0054

    Article  Google Scholar 

  31. Khajeh A, Hamzavi-Zarghani Z, Yahaghi A, Farmani A (2021) Tunable broadband polarization converters based on coded graphene metasurfaces. Sci Rep 11(1). https://doi.org/10.1038/s41598-020-80493-w

  32. Khani S, Farmani A, Mir A (2021) Reconfigurable and scalable 2,4-and 6-channel plasmonics demultiplexer utilizing symmetrical rectangular resonators containing silver nano-rod defects with FDTD method. Sci Rep 11(1). https://doi.org/10.1038/s41598-021-93167-y

  33. Zangeneh AMR, Farmani A, Mozaffari MH, Mir A (2022) Enhanced sensing of terahertz surface plasmon polaritons in graphene/J-aggregate coupler using FDTD method. Diam Relat Mater 125. https://doi.org/10.1016/j.diamond.2022.109005

  34. Younes N et al (2022) Challenges in laboratory diagnosis of the novel coronavirus SARS-CoV-2. Viruses 12(6). https://doi.org/10.3390/v12060582

  35. Das Mukhopadhyay C, Sharma P, Sinha K, Rajarshi K (2021) Recent trends in analytical and digital techniques for the detection of the SARS-Cov-2. Biophys Chem 270. https://doi.org/10.1016/j.bpc.2020.106538

  36. Bakhshpour-Yucel M, Gür SD, Seymour E, Aslan M, Lortlar Ünlü N, Ünlü MS (2023) Highly-Sensitive, Label-Free Detection of Microorganisms and Viruses via Interferometric Reflectance Imaging Sensor. Micromachines 14(2). https://doi.org/10.3390/mi14020281

  37. Taya SA, Daher MG, Almawgani AHM, Hindi AT, Zyoud SH, Colak I (2023) Detection of Virus SARS-CoV-2 Using a Surface Plasmon Resonance Device Based on BiFeO3-Graphene Layers. Plasmonics 123456789. https://doi.org/10.1007/s11468-023-01867-0

  38. Pal S, Prajapati YK, Saini JP (2020) Influence of graphene’s chemical potential on SPR biosensor using ZnO for DNA hybridization. Opt Rev 27(1):57–64. https://doi.org/10.1007/s10043-019-00564-w

    Article  CAS  Google Scholar 

  39. Huang et al (2020) Thermal conductivity of graphene-based polymer nanocomposites. Mater Sci Eng R: Rep 142. https://doi.org/10.1016/j.mser.2020.100577

  40. Jhaa G, Pancharatna PD, Balakrishnarajan MM (2023) Topological Impact of Delocalization on the Stability and Band Gap of Partially Oxidized Graphene. ACS Omega 8(5):5124–5135. https://doi.org/10.1021/acsomega.2c08169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Patel SK, Surve J, Parmar J, Aliqab K, Alsharari M, Armghan A (2023) SARS-CoV-2 detecting rapid metasurface-based sensor. Diam Relat Mater 132:109644. https://doi.org/10.1016/j.diamond.2022.109644

  42. Kumar A, Kumar A, Srivastava SK (2022) Silicon Nitride-BP-Based Surface Plasmon Resonance Highly Sensitive Biosensor for Virus SARS-CoV-2 Detection. Plasmonics 17(3):1065–1077. https://doi.org/10.1007/s11468-021-01589-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Moznuzzaman M, Khan I, Islam MR (2021) Nano-layered surface plasmon resonance-based highly sensitive biosensor for virus detection: A theoretical approach to detect SARS-CoV-2. AIP Adv 11(6). https://doi.org/10.1063/5.0046574

  44. Uddin SMA, Chowdhury SS, Kabir E (2021) Numerical Analysis of a Highly Sensitive Surface Plasmon Resonance Sensor for SARS-CoV-2 Detection. Plasmonics 16(6):2025–2037. https://doi.org/10.1007/s11468-021-01455-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Patel SK, Surve J, Parmar J (2022) Detection of cancer with graphene metasurface-based highly efficient sensors. Diam Relat Mater 129:109367. https://doi.org/10.1016/j.diamond.2022.109367

  46. Saadeldin AS, Hameed MFO, Elkaramany EMA, Obayya SSA (2019) Highly Sensitive Terahertz Metamaterial Sensor. IEEE Sens J 19(18):7993–7999. https://doi.org/10.1109/JSEN.2019.2918214

    Article  CAS  Google Scholar 

  47. Patel SK et al (2022) Encoding and tuning of THz metasurface-based refractive index sensor with behavior prediction using XGBoost Regressor. IEEE Access 1–1. https://doi.org/10.1109/ACCESS.2022.3154386

Download references

Acknowledgements

Researchers Supporting Project number (RSPD2023R654), King Saud University, Riyadh, Saudi Arabia.

Funding

Researchers Supporting Project number (RSPD2023R654), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

“Conceptualization, Osamah Alsalman, Shobhit K. Patel, and Jaymit Surve, methodology, Osamah Alsalman, Shobhit K. Patel, Jaymit Surve, software, Jacob Wekalao and Osamah Alsalman, validation, Jaymit surve, N. A. Natraj, Shobhit K. Patel, Juveriya Parmar, writing—original draft preparation, Jacob Wekalao, Osamah Alsalman, Jaymit surve, N. A. Natraj, Shobhit K. Patel, Juveriya Parmar, writing—review and editing, Jacob Wekalao, Osamah Alsalman, Jaymit surve, N. A. Natraj, Shobhit K. Patel, Juveriya Parmar, All authors have read and agreed to the published version of the manuscript.”

Corresponding author

Correspondence to Shobhit K. Patel.

Ethics declarations

Ethical Approval

(not applicable).

Competing Interests

(not applicable).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wekalao, J., Alsalman, O., Natraj, N.A. et al. Design of Graphene Metasurface Sensor for Efficient Detection of COVID-19. Plasmonics 18, 2335–2345 (2023). https://doi.org/10.1007/s11468-023-01946-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01946-2

Keywords

Navigation