Skip to main content
Log in

Graphene-Based THz Surface Plasmon Resonance Biosensor for Hemoglobin Detection Applicable in Forensic Science

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this article, we have introduced an innovative sensor configuration employing a metasurface encompassing three rectangles configured into a star-shaped structure and multiple square-graphene elements—for accurate blood analysis. The suggested sensor architecture, characterized by its hierarchical structural configuration, offers several advantages crucial for accurate and reliable detection of target biomolecules. The star-shaped pattern, meticulously constructed with specific dimensions, significantly increases the surface area exposed to target compounds, thereby enhancing sensor sensitivity. Forensic science is at the core of investigations into crimes. It is undoubtedly crucial to modern legal structures. It is a constantly growing field that is always looking for new ways to increase the level of accuracy, sensitivity, and effectiveness of evidence examination. Terahertz (THz) spectra have recently developed as a sophisticated method with incredible potential in every aspect of forensics. A critical component of this endeavor is the development of THz sensors capable of detecting hemoglobin, a crucial protein in the evaluation of blood. The proposed sensor displays a remarkable level of sensitivity, with a maximum value of 300 GHzRIU−1 and a detection limit of 1.013 RIU−1. Moreover, the sensor demonstrates its capacity to detect subtle variations through its resolutions and Figure of Merit (FOM), quantified respectively as 0.268 and 1.796 RIU−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

The data supporting the findings in this work are available from the corresponding author with a reasonable request.

References

  1. Heavey AL, Turbett GR, Houck MM, Lewis SW (2023) Management and disclosure of quality issues in forensic science: a survey of current practice in Australia and New Zealand. Forensic Sci Int Synerg 7. https://doi.org/10.1016/j.fsisyn.2023.100339

  2. Simon A, Barradas NP, Jeynes C, Romolo FS (2023) Addressing forensic science challenges with nuclear analytical techniques – a review. Forensic Sci Int 111767. https://doi.org/10.1016/j.forsciint.2023.111767

  3. Butler JM (2023) Recent advances in forensic biology and forensic DNA typing: INTERPOL review 2019–2022. Forensic Sci Int Synerg 6. https://doi.org/10.1016/j.fsisyn.2022.100311

  4. Répás J (2023) Definition of forensic methodologies for autonomous vehicles. Hadmérnök 18(1):125–141. https://doi.org/10.32567/hm.2023.1.9

    Article  Google Scholar 

  5. Gerostamoulos D, Schumann J (2022) Blood analysis for traditional drugs of abuse. In Encyclopedia of Forensic Sciences:Third Edition 1-4:356–364. https://doi.org/10.1016/B978-0-12-823677-2.00270-1

  6. Zhang Z, Peng D (2023) Recent advances in enhancement techniques for blood fingerprints. Crit Rev Anal Chem 53(2):442–461. https://doi.org/10.1080/10408347.2022.2111656

    Article  CAS  PubMed  Google Scholar 

  7. Larabi IA, Etting I, Alvarez JC (2023) The duration of ketamine detection in hair after treatment cessation: case study and review of the literature in forensic and clinical casework. Drug Test Anal. https://doi.org/10.1002/dta.3444

    Article  PubMed  Google Scholar 

  8. Acharjya PP, Koley S, Barman S (2022) A review on forensic science and criminal investigation through a deep learning framework. in Aiding Forensic Investigation Through Deep Learning and Machine Learning Frameworks 1–72. https://doi.org/10.4018/978-1-6684-4558-7.ch001

  9. Bansal P, Bhargava D, Bansal P, Ali S (2022) Determination of ABO blood group and rhesus factor from teeth: a double-blinded randomized controlled trial. Online J Heal Allied Sci 21(4)

  10. Misevic G (2018) ABO blood group system. Blood and Genomics 2(2):71–84. https://doi.org/10.46701/apjbg.2018022018113

    Article  Google Scholar 

  11. Mohammed AK (2022) Blood groups ABO and Rh system among paternity and kinship cases of Iraqi medical legal directorate. J Educ Psychol Res 4(3). https://doi.org/10.33140/jepr.04.03.10

  12. David Tan WC, Stasi A, Dhar BK (2022) Forensic DNA profiling in the southern border provinces of Thailand: ethical and regulatory issues. Forensic Sci Int 336. https://doi.org/10.1016/j.forsciint.2022.111322

  13. Erlich H, Stover E, White TJ (2020) Silent witness: forensic DNA evidence in criminal investigations and humanitarian disasters. https://doi.org/10.1093/oso/9780190909444.001.0001

    Article  Google Scholar 

  14. Silva LP et al (2022) An assessment of serological techniques for the identification of asymptomatic visceral leishmaniasis in blood donors in Northeastern Brazil. Res Soc Dev 11(6):e14011628827. https://doi.org/10.33448/rsd-v11i6.28827

    Article  Google Scholar 

  15. Saferstein R et al (2013) Forensic science : from the crime scene to the crime lab--2nd ed. 136(1)

  16. Kistenev YV, Borisov AV, Samarinova AA, Colón-Rodríguez S, Lednev IK (2023) A novel Raman spectroscopic method for detecting traces of blood on an interfering substrate. Sci Rep 13(1). https://doi.org/10.1038/s41598-023-31918-9

  17. Islek D, Kiris E, Karatas O, Holumen N, Yukseloglu E (2023) Evaluation of laser-induced breakdown spectroscopy (LIBS) applications in the aspect of forensic chemistry. Nov Forensic Res 2(2):33. https://doi.org/10.5455/nofor.2023.03.05

    Article  Google Scholar 

  18. El-Azazy M, Al-Saad K, El-Shafie AS (2022) Infrared spectroscopy - perspectives and applicationshttps://doi.org/10.5772/intechopen.100794

  19. Sang J et al (2023) Effective coupling of amorphous selenium phosphide with high-conductivity graphene as resilient high-capacity anode for sodium-ion batteries. Adv Funct Mater 33(19) https://doi.org/10.1002/adfm.202211640

  20. Almafie MR, Marlina L, Riyanto R, Jauhari J, Nawawi Z, Sriyanti I (2022) Dielectric properties and flexibility of polyacrylonitrile/graphene oxide composite nanofibers. ACS Omega 7(37):33087–33096. https://doi.org/10.1021/acsomega.2c03144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barve K, Singh U, Yadav P, Bhatia D (2023) Carbon-based designer and programmable fluorescent quantum dots for targeted biological and biomedical applications. Mater Chem Front. https://doi.org/10.1039/d2qm01287a

    Article  Google Scholar 

  22. Jeong S et al (2023) Highly conductive quasi-defect-free reduced graphene oxide for qualitative scalable production. Carbon N Y 203:221–229. https://doi.org/10.1016/j.carbon.2022.11.041

    Article  CAS  Google Scholar 

  23. Li Z, Pestourie R, Lin Z, Johnson SG, Capasso F (2022) Empowering metasurfaces with inverse design: principles and applications. ACS Photonics 9(7):2178–2192. https://doi.org/10.1021/acsphotonics.1c01850

    Article  CAS  Google Scholar 

  24. Abdelraouf OAM et al (2022) Recent advances in tunable metasurfaces: materials, design, and applications. ACS Nano 16(9):13339–13369. https://doi.org/10.1021/acsnano.2c04628

    Article  CAS  PubMed  Google Scholar 

  25. Della Valle G et al (2017) Nonlinear anisotropic dielectric metasurfaces for ultrafast nanophotonics. ACS Photonics 4(9):2129–2136. https://doi.org/10.1021/acsphotonics.7b00544

  26. Dixon K et al (2023) Dispersion-engineered deep sub-wavelength plasmonic metasurfaces for broadband Seira applications. Adv Opt Mater. https://doi.org/10.1002/adom.202300979

    Article  Google Scholar 

  27. Jing X, Li Y, Li J, Wang Y, Huang L (2023) Active 3D positioning and imaging modulated by single fringe projection with compact metasurface device. Nanophotonics 12(10):1923–1930. https://doi.org/10.1515/nanoph-2023-0112

    Article  CAS  Google Scholar 

  28. Shi S, Yuan S, Zhou J, Jiang P (2023) Terahertz technology and its applications in head and neck diseases. iScience 26(7). https://doi.org/10.1016/j.isci.2023.107060

  29. Wekalao J, Alsalman O, Natraj NA, Surve J, Parmar J, Patel SK (2023) Design of graphene metasurface sensor for efficient detection of COVID-19. Plasmonics. https://doi.org/10.1007/s11468-023-01946-2

    Article  Google Scholar 

  30. Mezache Z, Hafdi Z, Tao J (2023) Design of a novel graphene buzzle metamaterial refractometer for sensing of cancerous cells in the terahertz regime. Optik (Stuttg) 287. https://doi.org/10.1016/j.ijleo.2023.171170

  31. Jana A, Rane S, Choudhury PR, Chowdhury DR (2022) External bias dependent dynamic terahertz propagation through BiFeO3film. Nanotechnology 33(32). https://doi.org/10.1088/1361-6528/ac6bb2

  32. Tu W, Zhong S, Zhang Q, Huang Y (2023) Rapid diagnosis of corrosion beneath epoxy protective coating using non-contact THz-TDS technique. Nondestruct Test Eval. https://doi.org/10.1080/10589759.2023.2214670

    Article  Google Scholar 

  33. Ravindran N et al (2023) Recent advances in Surface Plasmon Resonance (SPR) biosensors for food analysis: a review. Crit Rev Food Sci Nutr 63(8):1055–1077. https://doi.org/10.1080/10408398.2021.1958745

    Article  CAS  PubMed  Google Scholar 

  34. Yadav A, Mishra M, Tripathy SK, Kumar A, Singh OP, Sharan P (2023) Improved surface plasmon effect in Ag-based SPR biosensor with graphene and WS2: an approach towards low cost urine-glucose detection. Plasmonics. https://doi.org/10.1007/s11468-023-01945-3

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kumar S, Yadav A, Malomed BA (2023) High performance surface plasmon resonance based sensor using black phosphorus and magnesium oxide adhesion layer. Front Mater 10. https://doi.org/10.3389/fmats.2023.1131412

  36. D’Agata R, Bellassai N, Spoto G (2024) Exploiting the design of surface plasmon resonance interfaces for better diagnostics: a perspective review. Talanta 266. https://doi.org/10.1016/j.talanta.2023.125033

  37. Ahmadsaidulu S, Banik O, Kumar P, Kumar S, Banoth E (2023) Microfluidic point-of-care diagnostics for multi-disease detection using optical techniques: a review. IEEE Trans Nanobioscience. https://doi.org/10.1109/TNB.2023.3291544

    Article  PubMed  Google Scholar 

  38. Comsol (2023) In: IEEE Microwave Magazine, vol 24, no 2, pp 7–7. https://doi.org/10.1109/MMM.2022.3229860

  39. Jafari A, Broumand P, Vahab M, Khalili N (2022) An eXtended Finite Element Method implementation in COMSOL Multiphysics: solid mechanics. Finite Elem Anal Des 202. https://doi.org/10.1016/j.finel.2021.103707

  40. Rahman MM, Mou FA, Bhuiyan MIH, Islam MR (2022) Refractometric THz sensing of blood components in a photonic crystal fiber platform. Brazilian J Phys 52(2). https://doi.org/10.1007/s13538-022-01054-2

  41. Lazareva EN et al (2022) Refractive index measurements of tissue and blood components and OCAs in a wide spectral range. in Handbook of Tissue Optical Clearing: New Prospects in Optical Imaging 141–166. https://doi.org/10.1201/9781003025252-8

  42. Lazareva EN et al (2022) Optical properties of glycated and non-glycated hemoglobin – Raman/fluorescence spectroscopy and refractometry. J Biomed Photonics Eng 8(2). https://doi.org/10.18287/JBPE22.08.020303

  43. Rahad R, Rakib AKM, Haque MA, Sharar SS, Sagor RH (2023) Plasmonic refractive index sensing in the early diagnosis of diabetes, anemia, and cancer: an exploration of biological biomarkers. Results Phys 49. https://doi.org/10.1016/j.rinp.2023.106478

  44. Sari RP, Alizar A, Isa IM, Yulkifli Y (2023) Review: Manufacturing of fiber optic based glucose sensor and infrared biosensor,” in INTERNATIONAL CONFERENCE ON APPLIED COMPUTATIONAL INTELLIGENCE AND ANALYTICS (ACIA-2022) 50026. https://doi.org/10.1063/5.0126035

  45. Katsoulos PD et al (2017) Comparison of biuret and refractometry methods for the serum total proteins measurement in ruminants. Vet Clin Pathol 46(4):620–624. https://doi.org/10.1111/vcp.12532

    Article  PubMed  Google Scholar 

  46. Al-Dossari M, Zaky ZA, Awasthi SK, Amer HA, Aly AH (2023) Detection of glucose concentrations in urine based on coupling of Tamm–Fano resonance in photonic crystals. Opt Quantum Electron 55(6). https://doi.org/10.1007/s11082-023-04621-2

  47. Viljoen CD, Booysen C, Tantuan SS (2022) The suitability of using spectrophotometry to determine the concentration and purity of DNA extracted from processed food matrices. J Food Compos Anal 112. https://doi.org/10.1016/j.jfca.2022.104689

  48. Chen J, Yu B, Cong H, Shen Y (2023) Recent development and application of membrane chromatography. Anal Bioanal Chem 415(1):45–65. https://doi.org/10.1007/s00216-022-04325-8

    Article  CAS  PubMed  Google Scholar 

  49. Yanina IY et al (2023) Light distribution in fat cell layers at physiological temperatures. Sci Rep 13(1). https://doi.org/10.1038/s41598-022-25012-9

  50. Patel SK, Surve J, Parmar J (2022) Detection of cancer with graphene metasurface-based highly efficient sensors. Diam Relat Mater 129. https://doi.org/10.1016/j.diamond.2022.109367

  51. Fu H, Huang K, Watanabe K, Taniguchi T, Kayyalha M, Zhu J (2023) Aharonov-Bohm oscillations in bilayer graphene quantum hall edge state Fabry-Pérot interferometers. Nano Lett 23(2):718–725. https://doi.org/10.1021/acs.nanolett.2c05004

    Article  CAS  PubMed  Google Scholar 

  52. Tian C, Miao W, Zhao L, Wang J (2023) Graphene nanoribbons: current status and challenges as quasi-one-dimensional nanomaterials. Rev Phys 10. https://doi.org/10.1016/j.revip.2023.100082

  53. Jadeja R, Surve J, Parmar T, Patel SK, Al-Zahrani FA (2023) Detection of peptides employing a THz metasurface based sensor. Diam Relat Mater 109675. https://doi.org/10.1016/j.diamond.2022.109675

  54. Barzegar-Parizi S (2023) Refractive index sensor with dual sensing bands based on array of Jerusalem cross cavities to detect the hemoglobin concentrations. Opt Quantum Electron 55(1). https://doi.org/10.1007/s11082-022-04296-1

  55. Cheng R, Xu L, Yu X, Zou L, Shen Y, Deng X (2020) High-sensitivity biosensor for identification of protein based on terahertz Fano resonance metasurfaces. Opt Commun 473. https://doi.org/10.1016/j.optcom.2020.125850

  56. Saadeldin AS, Hameed MFO, Elkaramany EMA, Obayya SSA (2019) Highly sensitive terahertz metamaterial sensor. IEEE Sens J 19(18):7993–7999. https://doi.org/10.1109/JSEN.2019.2918214

    Article  CAS  Google Scholar 

Download references

Funding

The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Groups Funding program grant code (NU/RG/SERC/12/2).

Author information

Authors and Affiliations

Authors

Contributions

“Conceptualization, Abdulkarem H. M. Almawgani and Shobhit K. Patel; methodology, Abdulkarem H. M. Almawgani, Shobhit K. Patel, Jacob Wekalao; Software, Jacob Wekalao, and Abdulkare H.M. Almawgani, Arunkumar U; Validation, S. Gopinath. Arunkumar U. and Yahya Ali Abdelrahman Ali; writing—original draft preparation, Jacob Wekalao and Rinku Manvani; Formal Analysis, All Authors; writing—review and editing, All Authors; All authors have read and agreed to the published version of the manuscript.”

Corresponding author

Correspondence to Shobhit K. Patel.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wekalao, J., U, A.K., S, G. et al. Graphene-Based THz Surface Plasmon Resonance Biosensor for Hemoglobin Detection Applicable in Forensic Science. Plasmonics (2023). https://doi.org/10.1007/s11468-023-02146-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-023-02146-8

Keywords

Navigation