Skip to main content
Log in

Design and Analysis of Infrared Tunable All-Optical Filters Based on Plasmonic Hybrid Nanostructure Using Periodic Nanohole Arrays

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A tunable high transmission optical bandpass filter based on a plasmonic hybrid nanostructure, composed of a periodic array of nanocircles and nanoholes combining two isolated waveguides is introduced in this paper. The presented design improves the coupling, which results in a higher transmission peak. To study the filtering operation, different topologies are investigated. The transmission properties and the resonance wavelengths are adjusted by sweeping various geometrical parameters. A multimode spectrum for each of the topologies is obtained. A tunable bandgap and bandwidth can be obtained by adjusting the refractive index of the periodic nanostructure. We have reached a maximum quality factor and a small full width at half-maximum bandwidth with the maximum transmission values greater than 80%. The advantages of the presented structures which include the benefits of both plasmonic and periodic nanostructures are tunability, high detection resolution, and integrability at the nanoscale for optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The data that supports the findings of this study are available from the corresponding author upon request.

Code Availability

The simulation code that supports the findings of this study is available from the corresponding author upon request.

References

  1. Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58(20):2059

    Article  CAS  PubMed  Google Scholar 

  2. Meade R, Winn JN, Joannopoulos J (1995) Photonic crystals: molding the flow of light.  Princeton University Press Princeton, NJ

  3. Rayleigh L (1887) XVII. On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 24(147):145–159

    Article  Google Scholar 

  4. Danaie M, Kaatuzian H (2011) Improvement of power coupling in a nonlinear photonic crystal directional coupler switch. Photonics Nanostruct Fundam Appl 9(1):70–81

    Article  Google Scholar 

  5. Yamamoto N, Ogawa T, Komori K (2006) Photonic crystal directional coupler switch with small switching length and wide bandwidth. Opt Express 14(3):1223–1229

    Article  PubMed  Google Scholar 

  6. Granpayeh A, Habibiyan H, Parvin P (2019) Photonic crystal directional coupler for all-optical switching, tunable multi/demultiplexing and beam splitting applications. J Mod Opt 66(4):359–366

    Article  CAS  Google Scholar 

  7. Wu CJ, Liu CP, Ouyang Z (2012) Compact and low-power optical logic NOT gate based on photonic crystal waveguides without optical amplifiers and nonlinear materials. Appl Opt 51(5):680–685

    Article  PubMed  Google Scholar 

  8. Danaie M, Kaatuzian H (2012) Design and simulation of an all-optical photonic crystal AND gate using nonlinear Kerr effect. Opt Quant Electron 44(1–2):27–34

    Article  CAS  Google Scholar 

  9. Shinya A et al (2006) All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab. Opt Express 14(3):1230–1235

    Article  PubMed  Google Scholar 

  10. Rakhshani MR, Mansouri-Birjandi MA (2013) Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Physica E 50:97–101

    Article  CAS  Google Scholar 

  11. Rostami A, Banaei HA, Nazari F, Bahrami A (2011) An ultra compact photonic crystal wavelength division demultiplexer using resonance cavities in a modified Y-branch structure. Optik 122(16):1481–1485

    Article  CAS  Google Scholar 

  12. Rakhshani MR (2020) Compact eight-channel wavelength demultiplexer using modified photonic crystal ring resonators for CWDM applications. Photon Netw Commun 1–9

  13. Rostami A, Kaatuzian H, Rostami-Dogolsara B (2020) Acoustic 1× 2 demultiplexer based on fluid-fluid phononic crystal ring resonators. J Mol Liq 308:113144

    Article  CAS  Google Scholar 

  14. Choi DH, Nam SK, Jung K, Moon JH (2019) 2D photonic crystal nanodisk array as electron transport layer for highly efficient perovskite solar cells. Nano Energy 56:365–372

    Article  CAS  Google Scholar 

  15. Geravand A, Danaie M, Danaee E (2020) Low cross-talk waveguide intersections for TE polarization using photonic crystals. Opt Commun 458:124838

    Article  CAS  Google Scholar 

  16. Danaie M, Kiani B (2018) Design of a label-free photonic crystal refractive index sensor for biomedical applications. Photonics Nanostruct Fundam Appl 31:89–98

    Article  Google Scholar 

  17. Rahman-Zadeh F, Danaie M, Kaatuzian H (2019) Design of a highly sensitive photonic crystal refractive index sensor incorporating ring-shaped GaAs cavity. Opto Electron Rev 27(4):369–377

    Article  Google Scholar 

  18. Wu C et al (2018) Plasmon-induced transparency and refractive index sensing in side-coupled stub-hexagon resonators. Plasmonics 13(1):251–257

    Article  CAS  Google Scholar 

  19. Kaatuzian H (2020) Photonics, vol 2. 5th printing. Amirkabir University Press, Tehran

  20. Mansouri-Birjandi MA, Rakhshani MR (2013) A new design of tunable four-port wavelength demultiplexer by photonic crystal ring resonators. Optik 124(23):5923–5926

    Article  Google Scholar 

  21. Tavousi A (2019) Wavelength-division demultiplexer based on hetero-structure octagonal-shape photonic crystal ring resonators. Optik 179:1169–1179

    Article  CAS  Google Scholar 

  22. Englund D, Fushman I, Vuckovic J (2005) General recipe for designing photonic crystal cavities. Opt Express 13(16):5961–5975

    Article  PubMed  Google Scholar 

  23. Rickert L, Fritsch B, Kors A, Reithmaier JP, Benyoucef M (2020) Mode properties of telecom wavelength InP-based high-(Q/V) L4/3 photonic crystal cavities. Nanotechnology 31(31):315703

    Article  CAS  PubMed  Google Scholar 

  24. Saghaei H, Zahedi A, Karimzadeh R, Parandin F (2017) Line defects on As2Se3-Chalcogenide photonic crystals for the design of all-optical power splitters and digital logic gates. Superlattices Microstruct 110:133–138

    Article  CAS  Google Scholar 

  25. Danaie M, NASIRIFAR R, Dideban A, Sciences C (2017) Design of adjustable T-shaped and Y-shaped photonic crystal power splitters for TM and TE polarizations. Turk J Electr Eng Comput Sci 25(5):4398–4408

  26. Foghani S, Kaatuzian H, Danaie M (2010) Simulation and design of a wideband T-shaped photonic crystal splitter. Opt Appl 40(4):863–872

    CAS  Google Scholar 

  27. Lifshitz R, Arie A, Bahabad A (2005) Photonic quasicrystals for nonlinear optical frequency conversion. Phys Rev Lett 95(13):133901

    Article  PubMed  CAS  Google Scholar 

  28. Mohammadi M, Olyaee S, Seifouri M (2019) Passive integrated optical gyroscope based on photonic crystal ring resonator for angular velocity sensing. SILICON 11(6):2531–2538

    Article  CAS  Google Scholar 

  29. Naghizade S, Saghaei H (2021) A novel design of all-optical full-adder using nonlinear X-shaped photonic crystal resonators. Opt Quant Electron 53(3):1–13

    Google Scholar 

  30. Pourmand M, Karimkhani A, Nazari F (2016) Wideband and low-dispersion engineered slow light using liquid infiltration of a modified photonic crystal waveguide. Appl Opt 55(35):10060–10066

    Article  PubMed  Google Scholar 

  31. Maleki M, Soroosh M (2020) A novel proposal for performance improvement in two-dimensional photonic crystal-based 2-to-4 decoders. Laser Phys 30(7):076203

    Article  CAS  Google Scholar 

  32. Yang J et al (2020) Fluorescence sensor for volatile trace explosives based on a hollow core photonic crystal fiber. Sens Actuators B Chem 306:127585

    Article  CAS  Google Scholar 

  33. Raei R, Ebnali-Heidari M, Saghaei H (2018) Supercontinuum generation in organic liquid-liquid core-cladding photonic crystal fiber in visible and near-infrared regions. JOSA B 35(2):323–330

    Article  CAS  Google Scholar 

  34. Aliee M, Mozaffari MH, Saghaei H (2020) Dispersion-flattened photonic quasicrystal optofluidic fiber for telecom C band operation. Photonics Nanostruct Fundam Appl 40:100797

    Article  Google Scholar 

  35. Saghaei H, Ebnali-Heidari M, Moravvej-Farshi M (2015) Midinfrared supercontinuum generation via As 2 Se 3 chalcogenide photonic crystal fibers. Appl Opt 54(8):2072–2079

    Article  CAS  PubMed  Google Scholar 

  36. Danaie M, Geravand A, Mohammadi S (2018) Photonic crystal double-coupled cavity waveguides and their application in design of slow-light delay lines. Photonics Nanostruct Fundam Appl 28:61–69

    Article  Google Scholar 

  37. Eftekharinia B, Parvin P, Habibiyan H, Hoseinzadeh H (2014) Analysis of amplification properties of a photonic crystal fiber. Optik 125(4):1565–1571

    Article  CAS  Google Scholar 

  38. Mozaffari MH, Ebnali-Heidari M, Abaeiani G, Moravvej-Farshi MK (2018) Designing a miniaturized photonic crystal based optofluidic biolaser for lab-on-a-chip biosensing applications. Org Electron 54:184–191

    Article  CAS  Google Scholar 

  39. Geravand A, Danaie M, Mohammadi S (2019) All-optical photonic crystal memory cells based on cavities with a dual-argument hysteresis feature. Opt Commun 430:323–335

    Article  CAS  Google Scholar 

  40. Gao WS, Xiao M, Chan CT, Tam WY (2015) Determination of Zak phase by reflection phase in 1D photonic crystals. Opt Lett 40(22):5259–5262

    Article  CAS  PubMed  Google Scholar 

  41. Sohrabi F, Hamidi SM, Asgari N, Ansari MA, Gachiloo R (2019) One dimensional photonic crystal as an efficient tool for in-vivo optical sensing of neural activity. Opt Mater 96:109275

    Article  CAS  Google Scholar 

  42. Chiasera A et al (2019) Coherent emission from fully Er3+ doped monolithic 1-D dielectric microcavity fabricated by rf-sputtering. Opt Mater 87:107–111

    Article  CAS  Google Scholar 

  43. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830

    Article  CAS  PubMed  Google Scholar 

  44. Maier SA (2007) Plasmonics: fundamentals and applications. Springer Science & Business Media

  45. Ghodsi H, Kaatuzian H (2020) Design and analysis of an electrically pumped GaAs quantum dot plasmonic nanolaser. Optik 203:164027

    Article  CAS  Google Scholar 

  46. Shafagh SG, Kaatuzian H, Danaie M (2020) Analysis, design and simulation of MIM plasmonic filters with different geometries for technical parameters improvement. Comm Theoret Phys 72(8):085502

    Article  Google Scholar 

  47. Shafagh SG, Kaatuzian H, Danaie M (2021) Ahighly sensitive tunable filter using hybrid 1-D photonic crystal and plasmonic MIM waveguide. Optik 228:166174

    Article  CAS  Google Scholar 

  48. Moazzam MK, Kaatuzian H (2018) Electro-plasmonic modal power shifting in metal/insulator/semiconductor structure tailored as a cmos-compatible plasmonic waveguide. Plasmonics 13(4):1373–1385

    Article  CAS  Google Scholar 

  49. Pashaki ER, Kaatuzian H, Livani AM (2019) Hydrodynamic analysis and responsivity improvement of a metal/semiconductor/metal plasmonic detector. Plasmonics 14(6):1639–1648

    Article  CAS  Google Scholar 

  50. Pashaki ER, Kaatuzian H, Livani AM, Ghodsi H (2019) Design and investigation of a balanced silicon-based plasmonic internal-photoemission detector. Appl Phys B 125(1):2

    Article  CAS  Google Scholar 

  51. Dolatabady A, Granpayeh N, Abedini M (2019) Nanoscale plasmonic detector of wave intensity difference and uni-directional waveguide. Opt Quant Electron 51(7):1–10

    Article  CAS  Google Scholar 

  52. Keleshtery MH, Kaatuzian H, Mir A, Zandi A (2017) Method proposing a slow light ring resonator structure coupled with a metal–dielectric–metal waveguide system based on plasmonic induced transparency. Appl Opt 56(15):4496–4504

    Article  CAS  PubMed  Google Scholar 

  53. Alipour A, Farmani A, Mir A (2020) SiO2–silver metasurface architectures for ultrasensitive and tunable plasmonic biosensing. Plasmonics1–8

  54. Amoosoltani N, Yasrebi N, Farmani A, Zarifkar A (2020) A plasmonic nano-biosensor based on two consecutive disk resonators and unidirectional reflectionless propagation effect. IEEE Sens J 20(16):9097–9104

    Article  CAS  Google Scholar 

  55. Rahmatiyar M, Afsahi M, Danaie M (2020) Design of a refractive index plasmonic sensor based on a ring resonator coupled to a MIM waveguide containing tapered defects. Plasmonics 15(6):2169–2176

    Article  CAS  Google Scholar 

  56. Rahmatiyar M, Danaie M, Afsahi M (2020) Employment of cascaded coupled resonators for resolution enhancement in plasmonic refractive index sensors. Plasmonics 52(3):1–19

    Google Scholar 

  57. Asgari S, Granpayeh N (2019) Tunable mid-infrared refractive index sensor composed of asymmetric double graphene layers. IEEE Sens J 19(14):5686–5691

    Article  CAS  Google Scholar 

  58. Nasirifar R, Danaie M, Dideban A (2021) Surface plasmon resonance biosensor using inverted graded index optical fiber. Photonics Nanostruct Fundam Appl 100916

  59. Liu X, Ytterdal T, Shur M (2020) Plasmonic FET terahertz spectrometer. IEEE Access 8:56039–56044

    Article  Google Scholar 

  60. Ayata M et al (2017) High-speed plasmonic modulator in a single metal layer. Science 358(6363):630–632

    Article  CAS  PubMed  Google Scholar 

  61. Berini P, De Leon I (2012) Surface plasmon–polariton amplifiers and lasers. Nat Photonics 6(1):16–24

    Article  CAS  Google Scholar 

  62. Livani AM, Kaatuzian H (2015) Design and simulation of an electrically pumped Schottky-junction-based plasmonic amplifier. Appl Opt 54(9):2164–2173

    Article  CAS  PubMed  Google Scholar 

  63. Ghodsi H, Kaatuzian H (2020) High purcell factor achievement of notched cavity germanium multiple quantum well plasmon source. Plasmonics 15(1):155–167

    Article  CAS  Google Scholar 

  64. Wen K, Hu Y, Chen L, Zhou J, Lei L, Meng Z (2016) Plasmonic bidirectional/unidirectional wavelength splitter based on metal-dielectric-metal waveguides. Plasmonics 11(1):71–77

    Article  CAS  Google Scholar 

  65. Hajshahvaladi L, Kaatuzian H, Danaie M (2019) Design and analysis of a plasmonic demultiplexer based on band-stop filters using double-nanodisk-shaped resonators. Opt Quant Electron 51(12):1–16

    Article  CAS  Google Scholar 

  66. Farmani H, Farmani A, Biglari Z (2020) A label-free graphene-based nanosensor using surface plasmon resonance for biomaterials detection. Physica E Low Dimens Syst Nanostruct 116:113730

    Article  CAS  Google Scholar 

  67. Wang H (2018) Plasmonic refractive index sensing using strongly coupled metal nanoantennas: nonlocal limitations. Sci Rep 8(1):1–8

    Google Scholar 

  68. Rostami-Khomami A, Nikoufard M (2020) Hybrid plasmonic ring-resonator uni-traveling carrier pin-photodetector on InGaAsP/InP layer stack. IEEE Trans Electron Devices

  69. Moradian F, Farmani A, Yavarian M, Mir A, Behzadfar F (2020) A multimode graphene plasmonic perfect absorber at terahertz frequencies. Physica E Low Dimens Syst Nanostruct 114159

  70. Nickpay MR, Danaie M, Shahzadi A (2021) A wideband and polarization-insensitive graphene-based metamaterial absorber. Superlattice Microstruct 150:106786

    Article  CAS  Google Scholar 

  71. Rakhshani MR (2021) Wide-angle perfect absorber using a 3D nanorod metasurface as a plasmonic sensor for detecting cancerous cells and its tuning with a graphene layer. Photonics Nanostruct Fundam Appl 43:100–883

    Article  Google Scholar 

  72. Taheri AN, Kaatuzian H (2014) Design and simulation of a nanoscale electro-plasmonic 1× 2 switch based on asymmetric metal–insulator–metal stub filters. Appl Opt 53(28):6546–6553

    Article  PubMed  CAS  Google Scholar 

  73. Yarahmadi M, Moravvej-Farshi MK, Yousefi L (2015) Subwavelength graphene-based plasmonic THz switches and logic gates. IEEE Transn Terahertz Sci Technol 5(5):725–731

    Article  CAS  Google Scholar 

  74. Moazzam MK, Kaatuzian H (2015) Design and investigation of N-type metal/insulator/semiconductor/metal structure two-port electro-plasmonic addressed routing switch. Appl Opt 54(20):6199–6207

    Article  CAS  PubMed  Google Scholar 

  75. Khani S, Danaie M, Rezaei P (2019) All-optical plasmonic switches based on asymmetric directional couplers incorporating Bragg gratings. Plasmonics 1–11

  76. Rezaei MH, Boroumandi R, Zarifkar A, Farmani A (2019) Nano-scale multifunctional logic gate based on graphene/hexagonal boron nitride plasmonic waveguides. IET Optoelectron 14(1):37–43

    Article  Google Scholar 

  77. Dolatabady A, Granpayeh N, Abedini M (2020) Frequency-tunable logic gates in graphene nano-waveguides. Photon Netw Commun 1–8

  78. Yasrebi N, Khorasani S, Karami-Taheri H, Rashidian B, Hosseini A (2010) Stable semi-analytical method for analysis of plasmonic propagation on periodically patterned metal plates. InPhotonic and Phononic Crystal Materials and Devices, X 7609 76091. E: International Society for Optics and Photonics

  79. Palik ED (1985) Handbook of optical constants of solids. Academic press

  80. Pannipitiya A, Rukhlenko ID, Premaratne M, Hattori HT, Agrawal GP (2010) Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure. Opt Express 18(6):6191–6204

    Article  CAS  PubMed  Google Scholar 

  81. Haus HA, Huang W (1991) Coupled-mode theory. Proc IEEE 79(10):1505–1518

    Article  Google Scholar 

  82. Xiang D, Li W (2014) MIM plasmonic waveguide splitter with tooth-shaped structures. J Mod Opt 61(3):222–226

    Article  CAS  Google Scholar 

  83. Yan S-B, Luo L, Xue C-Y, Zhang Z-D (2015) A refractive index sensor based on a metal-insulator-metal waveguide-coupled ring resonator. Sensors 15(11):29183–29191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang Z, Luo L, Xue C, Zhang W, Yan S (2016) Fano resonance based on metal-insulator-metal waveguide-coupled double rectangular cavities for plasmonic nanosensors. Sensors 16(5):642

    Article  PubMed Central  Google Scholar 

  85. Xie Y-Y, He C, Li J-C, Song T-T, Zhang Z-D, Mao Q-R (2016) Theoretical investigation of a plasmonic demultiplexer in MIM waveguide crossing with multiple side-coupled hexagonal resonators. IEEE Photonics J 8(5):1–12

    Article  Google Scholar 

  86. Xie Y, Huang Y, Xu W, Zhao W, He C (2016) A plasmonic temperature-sensing structure based on dual laterally side-coupled hexagonal cavities. Sensors 16(5):706

    Article  PubMed Central  Google Scholar 

  87. Rakhshani MR, Mansouri-Birjandi MA (2017) Utilizing the metallic nano-rods in hexagonal configuration to enhance sensitivity of the plasmonic racetrack resonator in sensing application. Plasmonics 12(4):999–1006

    Article  CAS  Google Scholar 

  88. Tang Y et al (2017) Refractive index sensor based on Fano resonances in metal-insulator-metal waveguides coupled with resonators. Sensors 17(4):784

    Article  PubMed Central  CAS  Google Scholar 

  89. Li S, Wang Y, Jiao R, Wang L, Duan G, Yu L (2017) Fano resonances based on multimode and degenerate mode interference in plasmonic resonator system. Opt Express 25(4):3525–3533

    Article  PubMed  Google Scholar 

  90. Zafar R, Chauhan P, Salim M, Singh G (2019) Metallic slit–loaded ring resonator–based plasmonic demultiplexer with large crosstalk. Plasmonics 14(4):1013–1017

    Article  CAS  Google Scholar 

  91. Khani S, Danaie M, Rezaei P (2019) Tunable single-mode bandpass filter based on metal–insulator–metal plasmonic coupled U-shaped cavities. IET Optoelectron 13(4):161–171

    Article  Google Scholar 

  92. Rafiee E, Negahdari R, Emami F (2019) Plasmonic multi channel filter based on split ring resonators: application to photothermal therapy. Photonics Nanostruct Fundam Appl 33:21–28

    Article  Google Scholar 

  93. Butt M, Khonina S, Kazanskiy N (2019) Plasmonic refractive index sensor based on metal–insulator-metal waveguides with high sensitivity. J Mod Opt 66(9):1038–1043

    Article  CAS  Google Scholar 

  94. Zheng D, Lin YS (2020) Tunable dual-split-disk resonator with electromagnetically induced transparency characteristic. Adv Mater Technol 5(11):2000584

    Article  Google Scholar 

Download references

Funding

No funding to declare.

Author information

Authors and Affiliations

Authors

Contributions

SGS performed the conceptualization, methodology, software, validation, and writing–original draft. HK performed the writing–review and editing, supervision, and project administration. MD performed the writing–review and editing, supervision, and project administration.

Corresponding author

Correspondence to Hassan Kaatuzian.

Ethics declarations

Ethics Approval

The authors declare that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere. Also, results are presented clearly, honestly, and without fabrication, falsification, or inappropriate data manipulation. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Consent to Participate

Informed consent was obtained from all authors.

Consent for Publication

The authors confirm that there is informed consent to the publication of the data contained in the article.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafagh, S.G., Kaatuzian, H. & Danaie, M. Design and Analysis of Infrared Tunable All-Optical Filters Based on Plasmonic Hybrid Nanostructure Using Periodic Nanohole Arrays. Plasmonics 17, 693–708 (2022). https://doi.org/10.1007/s11468-021-01558-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01558-8

Keywords

Navigation