Skip to main content
Log in

High Purcell Factor Achievement of Notched Cavity Germanium Multiple Quantum Well Plasmon Source

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Recently, many researches are reported on using germanium in silicon-based lasers but acquiring this potential for a plasmonic nanolaser may also be important for development of silicon-compatible plasmon sources. In this paper, a custom-shaped nanocavity plasmon source based on highly doped tensile-strained germanium/silicon-germanium multiple quantum well gain medium is introduced and theoretically investigated. We have used a semi-classical macroscopic rate equation model for calculation of the output performance characteristics. Also, modal analysis has been done based on FDTD method. The proposed nanolaser has a tiny footprint of 0.1225 μm2, possible room temperature performance, and fabrication process based on a silicon substrate. The output performance of the nanolaser structure as estimated is noticeable and the calculated results, using some previously reported experimental data and redundant software double checking, show acceptable compatibility. In 1550-nm output wavelength, it provides 15.6 mW output power in the 21-mA threshold current and 600 μW in 1-mA pump current, while maintaining its performance in a wide spectral bandwidth about 2 THz. It also can be electrically modulated by the pump current up to 3 GHz. This remarkable performance is achieved, thanks to the high Purcell factor of the parabolically notched nanocavity of about 700 and its high quality factor of about 58.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Enoch S, Bonod N (2012) Plasmonics. Springer, Heidelberg

    Book  Google Scholar 

  2. Livani AM, Kaatuzian H (2015) Design and simulation of an electrically pumped Schottky–Junction–based plasmonic amplifier. Appl Opt 54(9):2164–2173

    Article  CAS  Google Scholar 

  3. Moazzam MK, Kaatuzian H (2015) Design and investigation of a N-type metal/insulator/semiconductor/metal structure2port electro-plasmonic addressed routing switch. Appl Opt 54(20):6199–6207

    Article  CAS  Google Scholar 

  4. Taheri AN, Kaatuzian H (2014) Design and simulation of a nanoscale electro-plasmonic 1 × 2 switch based on asymmetric metal–insulator–metal stub filters. Appl Opt 53(28):6546–6553

    Article  Google Scholar 

  5. Rastegar Pashaki E, Kaatuzian H, Mallah Livani A, Ghodsi H (2018) Design and investigation of a balanced silicon-based plasmonic internal-photoemission detector. Appl Phys B Lasers Opt 125(1). https://doi.org/10.1007/s00340-018-7111-x

  6. Stockman M (2010) The spaser as a nanoscale quantum generator and ultrafast amplifier. J Opt 12(2):024004

    Article  Google Scholar 

  7. Liu K, Li N, Sadana D, Sorger V (2016) Integrated nanocavity plasmon light sources for on-Chip Optical interconnects. ACS Photonics 3(2):233–242

    Article  CAS  Google Scholar 

  8. Ho J, Tatebayashi J, Sergent S, Fong C, Ota Y, Iwamoto S, Arakawa Y (2016) A nanowire-based plasmonic quantum dot laser. Nano Lett 16(4):2845–2850

    Article  CAS  Google Scholar 

  9. Ding K, Ning C (2012) Metallic subwavelength-cavity semiconductor nanolasers. Light 1(7):e20–e20

    Article  Google Scholar 

  10. Liu J, Sun X, Pan D, Wang X, Kimerling LC, Koch TL, Michel J (2007) Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. Opt Express 15:11272–11277

    Article  CAS  Google Scholar 

  11. Camacho-Aguilera RE, Cai Y, Patel N, Bessette JT, Romagnoli M, Kimerling LC, Michel J (2012) An electrically pumped germanium laser. Opt Express 20:11316–11320

    Article  CAS  Google Scholar 

  12. Cai Y et al (2013) Analysis of threshold current behavior for bulk and quantum-well germanium laser structures. IEEE J Sel Top Quantum Electron 19(4):1901009–1901009. https://doi.org/10.1109/jstqe.2013.2247573

    Article  Google Scholar 

  13. Atwater H (2007) The promise of plasmonics. Sci Am 296(4):56–62

    Article  CAS  Google Scholar 

  14. Chang G-E, Chen S-W, Cheng HH (2016) Tensile-strained Ge/SiGe quantum-well photodetectors on silicon substrates with extended infrared response. Opt Express 24:17562–17571

    Article  CAS  Google Scholar 

  15. Nanophotonic FDTD (2019) Simulation software - lumerical FDTD solutions, Lumerical. [Online]. Available: http://www.lumerical.com/tcad-products/fdtd/. Accessed 5 Feb 2019

  16. Nunes FD, Vasconcelos TC, Bezerra M, Weiner J (2011) Electromagnetic energy density in dispersive and dissipative media. J Opt Soc Am B 28:1544–1552

    Article  CAS  Google Scholar 

  17. Purcell EM (1946) Spontaneous emission probabilities at radio frequencies. Phys Rev 69:681

    Article  Google Scholar 

  18. Francs G et al (2016) Plasmonic Purcell factor and coupling efficiency to surface plasmons. Implications for addressing and controlling optical nanosources. J Opt 18(9):094005. https://doi.org/10.1088/2040-8978/18/9/094005

    Article  CAS  Google Scholar 

  19. Ginzburg P (2016) Cavity quantum electrodynamics in application to plasmonics and metamaterials. Rev Phys 1:120–139

    Article  Google Scholar 

  20. Yokoyama H, Nishi K, Anan T, Nambu Y, Brorson SD, Ippen EP, Suzuki M (1992) Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities. Opt Quant Electron 24(2):S245–S272. https://doi.org/10.1007/bf00625827

    Article  CAS  Google Scholar 

  21. Ma R, Oulton R, Sorger V, Zhang X (2012) Plasmon lasers: coherent light source at molecular scales. Laser Photonics Rev 7(1):1–21. https://doi.org/10.1002/lpor.201100040

    Article  CAS  Google Scholar 

  22. Parfenyev V, Vergeles S (2014) Quantum theory of a spaser-based nanolaser. Opt Express 22(11):13671. https://doi.org/10.1364/oe.22.013671

    Article  PubMed  Google Scholar 

  23. Romero B, Arias J, Esquivias I, Cada M (2000) Simple model for calculating the ratio of the carrier capture and escape times in quantum-well lasers. Appl Phys Lett 76(12):1504–1506. https://doi.org/10.1063/1.126077

    Article  CAS  Google Scholar 

  24. Taghavi I, Kaatuzian H, Leburton J (2013) Performance optimization of multiple quantum well transistor laser. IEEE J Quantum Electron 49(4):426–435. https://doi.org/10.1109/jqe.2013.2250488

    Article  CAS  Google Scholar 

  25. Buck T, Brattain W (1955) Investigations of surface recombination velocities on germanium by the photoelectromagnetic method. J Electrochem Soc 102(11):636

    Article  CAS  Google Scholar 

  26. Boriskina S et al (2017) Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities. Adv Opt Photon 9(4):775. https://doi.org/10.1364/aop.9.000775

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Kaatuzian.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghodsi, H., Kaatuzian, H. High Purcell Factor Achievement of Notched Cavity Germanium Multiple Quantum Well Plasmon Source. Plasmonics 15, 155–167 (2020). https://doi.org/10.1007/s11468-019-01012-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-01012-w

Keywords

Navigation