Skip to main content
Log in

Design and analysis of a plasmonic demultiplexer based on band-stop filters using double-nanodisk-shaped resonators

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, a two-channel plasmonic wavelength demultiplexer (PWDM) based on band-stop filters (BSF) using double-nanodisk-shaped resonators is proposed. The structure is numerically simulated using finite difference time domain method. First, a BSF is considered for modeling which supports three modes. Then, the effect of various structural parameters of the proposed PWDM is studied on the transmission properties in detail. The results show that the transmission properties of our PWDM are highly dependent on geometric parameters. The proposed structure provides a single-mode spectrum on each of the output ports with a maximum quality factor as high as 105 (FWHM = 7.7 nm). To this end, we illustrate that the concerning published research in this field, the significant privilege of our proposed PWDM structure is in terms of its good transmission efficiency, lowest FWHM and highest quality factor. Hence, such an arrangement is easy to fabricate and it has the potential for use in all-optical ultra-compact circuits and devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Armaghani, S., Khani, S., Danaie, M.: Design of all-optical graphene switches based on a Mach–Zehnder interferometer employing optical Kerr effect. Superlattices Microstruct. 135, 106244 (2019)

    Google Scholar 

  • Ayata, M., et al.: High-speed plasmonic modulator in a single metal layer. Science 358(6363), 630–632 (2017)

    ADS  Google Scholar 

  • Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003). https://doi.org/10.1038/nature01937

    Article  ADS  Google Scholar 

  • Bouchal, P., Dvořák, P., Babocký, J., Bouchal, Z., Ligmajer, F., Hrtoň, M., Křápek, V., Faßbender, A., Linden, S., Chmelík, R., Šikola, T.: High-resolution quantitative phase imaging of plasmonic metasurfaces with sensitivity down to a single nanoantenna. Nano Lett. 19(2), 1242–1250 (2019)

    ADS  Google Scholar 

  • Chen, C.-H., Liao, K.-S.: 1xN plasmonic power splitters based on metal-insulator-metal waveguides. Opt. Express 21(4), 4036–4043 (2013)

    ADS  MathSciNet  Google Scholar 

  • Danaee, E., Geravand, A., Danaie, M.: Wide-band low cross-talk photonic crystal waveguide intersections using self-collimation phenomenon. Opt. Commun. 431, 216–228 (2019a)

    ADS  Google Scholar 

  • Danaee, E., Geravand, A., Danaie, M.: Wide-band low cross-talk photonic crystal waveguide intersections using self-collimation phenomenon. Opt. Commun. 431, 216–228 (2019b)

    ADS  Google Scholar 

  • Danaie, M., Shahzadi, A.: Design of a high-resolution metal–insulator–metal plasmonic refractive index sensor based on a ring-shaped Si resonator. Plasmonics. (2019). https://doi.org/10.1007/s11468-019-00926-9

    Article  Google Scholar 

  • Drezet, A., et al.: Plasmonic crystal demultiplexer and multiports. Nano Lett. 7(6), 1697–1700 (2007)

    ADS  MathSciNet  Google Scholar 

  • Enoch, S., Bonod, N.: Plasmonics: From Basics to Advanced Topics, vol. 167. Springer, Berlin (2012)

    Google Scholar 

  • Fang, Y., et al.: Branched silver nanowires as controllable plasmon routers. Nano Lett. 10(5), 1950–1954 (2010)

    ADS  Google Scholar 

  • Geng, X.-M., et al.: Tunable plasmonic wavelength demultiplexing device using coupled resonator system. IEEE Photonics J. 8(3), 1–8 (2016)

    MathSciNet  Google Scholar 

  • Geravand, A., Danaie, M., Mohammadi, S.: All-optical photonic crystal memory cells based on cavities with a dual-argument hysteresis feature. Opt. Commun. 430, 323–335 (2019)

    ADS  Google Scholar 

  • Ghodsi, H., Kaatuzian, H., Pashaki, E.R.: Semi-classical analysis and design of quantum dot based electrically pumped plasmonic nanolaser. arXiv preprint arXiv:1808.10586 (2018)

  • Ghodsi, H., Kaatuzian, H., Pashaki, E. R.: Analysis and design of a Germanium multi-quantum well metal strip nanocavity plasmon laser. arXiv preprint arXiv:1904.04208 (2019)

  • Ghorbanian, A., Kashani, A.M., Javan, A.M.: The effects of silver slabs in nanodisk resonator of plasmonic tunable band-pass filter. Optik-Int. J. Light Electron Opt. 127(4), 1884–1888 (2016)

    Google Scholar 

  • Hajshahvaladi, L., Kaatuzian, H., Danaie, M.: Design and simulation of infrared a photonic crystal band pass filters for fiber optics communication. In: 2017 Iranian Conference on Electrical Engineering (ICEE), IEEE (2017)

  • Johnson, P.B., Christy, R.-W.: Optical constants of the noble metals. Phys. Rev. B 6(12), 4370–4379 (1972). https://doi.org/10.1103/PhysRevB.6.4370

    Article  ADS  Google Scholar 

  • Khaleque, A., Hattori, H.T.: Plasmonic electro-absorption modulator and polarization selector. J. Mod. Opt. 64(12), 1164–1174 (2017)

    ADS  Google Scholar 

  • Khani, S., Danaie, M., Rezaei, P.: Realization of single-mode plasmonic bandpass filters using improved nanodisk resonators. Opt. Commun. 420, 147–156 (2018a)

    ADS  Google Scholar 

  • Khani, S., Danaie, M., Rezaei, P.: Double and triple-wavelength plasmonic demultiplexers based on improved circular nanodisk resonators. Opt. Eng. 57(10), 1–11 (2018b). https://doi.org/10.1117/1.OE.57.10.107102

    Article  Google Scholar 

  • Khani, S., Danaie, M., Rezaei, P.: Design of a single-mode plasmonic bandpass filter using a hexagonal resonator coupled to graded-stub waveguides. Plasmonics 4(1), 53–62 (2019a)

    Google Scholar 

  • Khani, S., Danaie, M., Rezaei, P.: Size reduction of MIM surface plasmon based optical bandpass filters by the introduction of arrays of silver nano-rods. Phys. E Low-dimensional Syst. Nanostruct. 113, 25–34 (2019b)

    ADS  Google Scholar 

  • Koushkaki, H.R., Akhlaghi, M.: Investigating the optical nand gate using plasmonic nano-spheres. Opt. Quantum Electron. 47(11), 3637–3645 (2015)

    Google Scholar 

  • Kumar, S., Singh, L., Chen, N.-K.: All-optical bit magnitude comparator device using metal–insulator–metal plasmonic waveguide. Opt. Eng. 56(12), 1–6 (2017). https://doi.org/10.1117/1.OE.56.12.121908

    Article  Google Scholar 

  • Li, H., Jiao, R-z: Plasmonic band-stop filters based on tooth structure. Opt. Commun. 439, 201–205 (2019)

    ADS  Google Scholar 

  • Liu, H., et al.: A T-shaped high resolution plasmonic demultiplexer based on perturbations of two nanoresonators. Opt. Commun. 334, 164–169 (2015)

    ADS  Google Scholar 

  • Livani, A.M., Kaatuzian, H.: Design and simulation of an electrically pumped Schottky-junction-based plasmonic amplifier. Appl. Opt. 54(9), 2164–2173 (2015)

    ADS  Google Scholar 

  • Livani, A.M., Kaatuzian, H.: Modulation-frequency analysis of an electrically pumped plasmonic amplifier. Plasmonics 12(1), 27–32 (2017)

    Google Scholar 

  • Lu, H., Yue, Z., Zhao, J.: Multiple plasmonically induced transparency for chip-scale bandpass filters in metallic nanowaveguides. Opt. Commun. 414, 16–21 (2018)

    ADS  Google Scholar 

  • Moazzam, M.K., Kaatuzian, H.: Design and investigation of N-type metal/insulator/semiconductor/metal structure two-port electro-plasmonic addressed routing switch. Appl. Opt. 54(20), 6199–6207 (2015)

    ADS  Google Scholar 

  • Moradi, M., Danaie, M., Orouji, A.A.: Design of all-optical XOR and XNOR logic gates based on Fano resonance in plasmonic ring resonators. Opt. Quantum Electron. 51(5), 1–18 (2019). https://doi.org/10.1007/s11082-019-1874-0

    Article  Google Scholar 

  • Nasirifar, R., Danaie, M., Dideban, A.: Dual channel optical fiber refractive index sensor based on surface plasmon resonance. Optik 186, 194–204 (2019)

    ADS  Google Scholar 

  • Nurmohammadi, T., Abbasian, K., Yadipour, R.: A proposal for a demultiplexer based on plasmonic metal–insulator–metal waveguide-coupled ring resonator operating in near-infrared spectrum. Optik 142, 550–556 (2017)

    ADS  Google Scholar 

  • Pannipitiya, A., et al.: Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure. Opt. Express 18(6), 6191–6204 (2010)

    ADS  Google Scholar 

  • Pashaki, E.R., Kaatuzian, H., Livani, A.M.: Design and simulation of a low dark current metal/silicon/metal integrated plasmonic detector. arXiv preprint arXiv:1811.05093 (2018)

  • Pashaki, E.R., Kaatuzian, H., Livani, A.M.: Hydrodynamic analysis and responsivity improvement of a metal/semiconductor/metal plasmonic detector. arXiv preprint arXiv:1901.10735 (2019a)

  • Pashaki, E.R., et al.: Design and investigation of a balanced silicon-based plasmonic internal-photoemission detector. Appl. Phys. B 125(1), 1–9 (2019b). https://doi.org/10.1007/s00340-018-7111-x

    Article  Google Scholar 

  • Pav, M.R., et al.: Ultracompact double tunable two-channel plasmonic filter and 4-channel multi/demultiplexer design based on aperture-coupled plasmonic slot cavity. Opt. Commun. 437, 285–289 (2019)

    ADS  Google Scholar 

  • Rafiee, E., Negahdari, R., Emami, F.: Plasmonic multi channel filter based on split ring resonators: application to photothermal therapy. Photonics Nanostructures-Fundam. Appl. 33, 21–28 (2019)

    ADS  Google Scholar 

  • Rakhshani, M.R., Mansouri-Birjandi, M.A.: Utilizing the metallic nano-rods in hexagonal configuration to enhance sensitivity of the plasmonic racetrack resonator in sensing application. Plasmonics 12(4), 999–1006 (2017)

    Google Scholar 

  • Rosenzveig, T., Hermannsson, P.G., Leosson, K.: Modelling of polarization-dependent loss in plasmonic nanowire waveguides. Plasmonics 5(1), 75–77 (2010)

    Google Scholar 

  • Setayesh, A., Mirnaziry, S.R., Abrishamian, M.S.: Numerical investigation of a tunable band-pass plasmonic filter with a hollow-core ring resonator. J. Opt. 13(3), 1–7 (2011). https://doi.org/10.1088/2040-8978/13/3/035004

    Article  Google Scholar 

  • Shahbazyan, T.V., Stockman, M.I.: Plasmonics: Theory and Applications. Springer, Berlin (2013)

    Google Scholar 

  • Shi, L., et al.: Plasmonic filter with highly selective wavelength in a fixed dimension based on the loaded rectangular ring cavity. Opt. Commun. 439, 125–128 (2019)

    ADS  Google Scholar 

  • Sukharenko, V., Dorsinville, R., Mynbaev, D.: Plasmonic modulation and demodulation structure for the future optical WDM devices in communication system. Solid-State Electron. 155, 159–162 (2019)

    ADS  Google Scholar 

  • Taheri, A.N., Kaatuzian, H.: Simulation and design of a submicron ultrafast plasmonic switch based on nonlinear doped silicon MIM waveguide. J. Comput. Commun. 1(07), 23–26 (2013). https://doi.org/10.4236/jcc.2013.17006

    Article  Google Scholar 

  • Taheri, A.N., Kaatuzian, H.: Design and simulation of a nanoscale electro-plasmonic 1 × 2 switch based on asymmetric metal–insulator–metal stub filters. Appl. Opt. 53(28), 6546–6553 (2014)

    ADS  Google Scholar 

  • Taheri, A.N., Kaatuzian, H.: Numerical investigation of a nano-scale electro-plasmonic switch based on metal-insulator-metal stub filter. Opt. Quantum Electron. 47(2), 159–168 (2015)

    Google Scholar 

  • Wei, Z., et al.: Optical band-stop filter and multi-wavelength channel selector with plasmonic complementary aperture embedded in double-ring resonator. Photonics Nanostructures-Fundam. Appl. 23, 45–49 (2017)

    ADS  Google Scholar 

  • Xiang, D., Li, W.: MIM plasmonic waveguide splitter with tooth-shaped structures. J. Mod. Opt. 61(3), 222–226 (2014)

    ADS  Google Scholar 

  • Xie, Y.-Y., et al.: Theoretical investigation of a plasmonic demultiplexer in MIM waveguide crossing with multiple side-coupled hexagonal resonators. IEEE Photonics J. 8(5), 1–12 (2016)

    Google Scholar 

  • Yun, B., Hu, G., Cui, Y.: Resonant mode analysis of the nanoscale surface plasmon polariton waveguide filter with rectangle cavity. Plasmonics 8(2), 267–275 (2013)

    Google Scholar 

  • Zafar, R., Chauhan, P., Salim, M., Singh, G.: Metallic slit–loaded ring resonator-based plasmonic demultiplexer with large crosstalk. Plasmonics 14(4), 1013–1017 (2019)

    Google Scholar 

  • Zavvari, M., Taleb Hesami Azar, M., Arashmehr, A.: Tunable band-stop plasmonic filter based on square ring resonators in a metal–insulator–metal structure. J. Mod. Opt. 64(20), 2221–2227 (2017)

    ADS  Google Scholar 

  • Zhang, Z., et al.: Numerical investigation of a branch-shaped filter based on metal-insulator-metal waveguide. Plasmonics 6(4), 773 (2011)

    Google Scholar 

  • Zhang, Z., et al.: Plasmonic filter and demultiplexer based on square ring resonator. Appl. Sci. 8(3), 1–10 (2018). https://doi.org/10.3390/app8030462

    Article  ADS  Google Scholar 

  • Zhao, W., Lu, Z.: Nanoplasmonic optical switch based on Ga–Si 3N 4-Ga waveguide. Opt. Eng. 50(7), 1–7 (2011). https://doi.org/10.1117/1.3595868

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Danaie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajshahvaladi, L., Kaatuzian, H. & Danaie, M. Design and analysis of a plasmonic demultiplexer based on band-stop filters using double-nanodisk-shaped resonators. Opt Quant Electron 51, 391 (2019). https://doi.org/10.1007/s11082-019-2108-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-2108-1

Keywords

Navigation