Skip to main content
Log in

Singular Integral Equations in Scattering of Planar Dielectric Waveguide Eigenwaves by the System of Graphene Strips at THz

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We consider the scattering of the H-polarized eigenwaves of a planar dielectric waveguide by a coplanar system of graphene strips in the THz range. The strips are placed along the centreline of the waveguide. Our treatment is based on the singular integral equations with the Nystrom-type discretization algorithm. Dependences of the scattering characteristics, near and far fields, are studied. Frequency scanning radiation patterns are presented. Maximum of the radiated power is observed near the plasmon resonances. The resonant frequency and main lobe level can be controlled by variation of the chemical potential. Applied optimization procedure allows to obtain the radiation pattern with the side-lobe level less than − 20 dB. The presented results can be used in designing of graphene leaky-wave antennas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code Availability

The home-made code that supports the findings of this study is available from the corresponding author upon reasonable request.

References

  1. Itoh T (1977) application of gratings in a dielectric waveguide for leaky-wave antennas and band-reject filters (Short Papers). IEEE Trans Microwave Theory Techn 25:1134–1138. https://doi.org/10.1109/tmtt.1977.1129287

    Article  Google Scholar 

  2. Kalinichev VI (1996) Radiation behavior of planar double-layer dielectric waveguides combined with a finite metal-strip grating. Microw Opt Technol Lett 11:69–73. https://doi.org/10.1002/(sici)1098-2760(19960205)11:2%3c69::aid-mop6%3e3.0.co;2-m

    Article  Google Scholar 

  3. Horng F, Chen CF, Geng B et al (2011) Drude conductivity of Dirac fermions in graphene Phys Rev B 83 https://doi.org/10.1103/physrevb.83.165113

  4. Ju L, Baisong G, Jason H et al (2011) Graphene plasmonics for tunable terahertz metamaterials Nature Nanotech 6:630-634 https://doi.org/10.1038/nnano.2011.146

  5. Xu N, Chen J, Wang J, Qin X, Shi J (2017) Dispersion HIE-FDTD method for simulating graphene-based absorber. IET Microwaves Antennas Propag 11:92–97. https://doi.org/10.1049/iet-map.2015.0707

    Article  Google Scholar 

  6. Winson D, Choudhury B, Selvakumar N, Barshilia H, Nair RU (2019) design and development of a hybrid broadband radar absorber using metamaterial and graphene. IEEE Trans Antennas Propagat 67:5446–5452. https://doi.org/10.1109/tap.2019.2907384

    Article  Google Scholar 

  7. Mishra R, Sahu A, Panwar R (2019) cascaded graphene frequency selective surface integrated tunable broadband terahertz metamaterial absorber. IEEE Photonics J 11:1–10. https://doi.org/10.1109/jphot.2019.2900402

    Article  CAS  Google Scholar 

  8. Tong K, Wang Y, Wang F, Sun J, Wu X (2019) Surface plasmon resonance biosensor based on graphene and grating excitation. Appl Opt 58:1824. https://doi.org/10.1364/ao.58.001824

    Article  CAS  PubMed  Google Scholar 

  9. Asgari S, Granpayeh N (2019) Tunable mid-infrared refractive index sensor composed of asymmetric double graphene layers. IEEE Sensors J 19:5686–5691. https://doi.org/10.1109/jsen.2019.2906759

    Article  CAS  Google Scholar 

  10. Dukhopelnykov SV, Sauleau R, Garcia-Vigueras M, Nosich AI (2019) Combined plasmon-resonance and photonic-jet effect in the THz wave scattering by dielectric rod decorated with graphene strip. J Appl Phys 126:023104. https://doi.org/10.1063/1.5093674

    Article  CAS  Google Scholar 

  11. Shapoval OV, Nosich AI (2016) Bulk refractive-index sensitivities of the THz-range plasmon resonances on a micro-size graphene strip. J Phys D: Appl Phys 49:055105. https://doi.org/10.1088/0022-3727/49/5/055105

    Article  CAS  Google Scholar 

  12. Nejat M, Nozhat N (2019) Ultrasensitive THz refractive index sensor based on a controllable perfect MTM absorber. IEEE Sensors J 19:10490–10497. https://doi.org/10.1109/jsen.2019.2931057

    Article  CAS  Google Scholar 

  13. Ghosh J, Mitra D (2017) Mutual coupling reduction in planar antenna by graphene metasurface for THz application. Journal of Electromagnetic Waves and Applications 31:2036–2045. https://doi.org/10.1080/09205071.2016.1277959

    Article  Google Scholar 

  14. Zhang B, Jornet JM, Akyildiz IF, Wu ZP (2019) Mutual coupling reduction for ultra-dense multi-band plasmonic nano-antenna arrays using graphene-based frequency selective surface. IEEE Access 7:33214–33225. https://doi.org/10.1109/access.2019.2903493

    Article  Google Scholar 

  15. Esquius-Morote M, Gomez-Diaz JS, Perruisseau-Carrier J (2014) Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz. IEEE Trans THz Sci Technol 4:116–122. https://doi.org/10.1109/tthz.2013.2294538

    Article  Google Scholar 

  16. Fuscaldo W, Burghignoli P, Baccarelli P, Galli A (2016) A reconfigurable substrate–superstrate graphene-based leaky-wave THz antenna. Antennas Wirel Propag Lett 15:1545–1548. https://doi.org/10.1109/lawp.2016.2550198

    Article  Google Scholar 

  17. Fuscaldo W, Burghignoli P, Baccarelli P, Galli A (2017) Efficient 2-D leaky-wave antenna configurations based on graphene metasurfaces. Int J Microw Wireless Technol 9:1293–1303. https://doi.org/10.1017/s1759078717000459

    Article  Google Scholar 

  18. Gomez-Diaz JS, Mosig JR, Perruisseau-Carrier J (2013) Effect of spatial dispersion on surface waves propagating along graphene sheets. IEEE Trans Antennas Propagat 61:3589–3596. https://doi.org/10.1109/tap.2013.2254443

    Article  Google Scholar 

  19. Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103:064302. https://doi.org/10.1063/1.2891452

    Article  CAS  Google Scholar 

  20. Hanson GW (2008) Dyadic Green’s functions for an anisotropic, non-local model of biased graphene. IEEE Trans Antennas Propagat 56:747–757. https://doi.org/10.1109/tap.2008.917005

    Article  Google Scholar 

  21. Chen J, Wang J (2016) Three-dimensional dispersive hybrid implicit–explicit finite-difference time-domain method for simulations of graphene. Comput Phys Commun 207:211–216. https://doi.org/10.1016/j.cpc.2016.06.007

    Article  CAS  Google Scholar 

  22. Chen J, Xu N, Zhang A, Guo J (2016) Using dispersion HIE-FDTD method to simulate the graphene-based polarizer. IEEE Trans Antennas Propagat 64:3011–3017. https://doi.org/10.1109/tap.2016.2555325

    Article  Google Scholar 

  23. Moharrami F, Atlasbaf Z (2020) simulation of multilayer graphene–dielectric metamaterial by implementing sbc model of graphene in the HIE-FDTD method. IEEE Trans Antennas Propagat 68:2238–2245. https://doi.org/10.1109/tap.2019.2948505

    Article  Google Scholar 

  24. Wang X-H, Gao J-Y, Teixeira FL (2019) Stability-improved ADE-FDTD method for wideband modeling of graphene structures. Antennas Wirel Propag Lett 18:212–216. https://doi.org/10.1109/lawp.2018.2886335

    Article  Google Scholar 

  25. Tamagnone M, Gómez-Díaz JS, Mosig JR, Perruisseau-Carrier J (2012) Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets. J Appl Phys 112:114915. https://doi.org/10.1063/1.4768840

    Article  CAS  Google Scholar 

  26. Slipchenko TM, Nesterov ML, Martin-Moreno L, Nikitin AY (2013) Analytical solution for the diffraction of an electromagnetic wave by a graphene grating. J Opt 15:114008. https://doi.org/10.1088/2040-8978/15/11/114008

    Article  CAS  Google Scholar 

  27. Kaliberda ME, Lytvynenko LM, Pogarsky SA (2019) Singular integral equations analysis of THz wave scattering by an infinite graphene strip grating embedded into a grounded dielectric slab. J Opt Soc Am A 36:1787. https://doi.org/10.1364/josaa.36.001787

    Article  CAS  Google Scholar 

  28. Kaliberda ME, Lytvynenko LM, Pogarsky SA (2020) THz waves scattering by finite graphene strip grating embedded into dielectric slab. IEEE J Quantum Electron 56:1–7. https://doi.org/10.1109/jqe.2019.2950679

    Article  CAS  Google Scholar 

  29. Ahapova OO, Koshovy GI (2020) On EM wave scattering by coplanar system of flat impedance strips. In 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO), IEEE. https://doi.org/10.1109/elnano50318.2020.9088752

  30. Dukhopelnykov SV, Sauleau R, Nosich AI (2020) integral equation analysis of terahertz backscattering from circular dielectric rod with partial graphene cover. IEEE J Quantum Electron 56:1–8. https://doi.org/10.1109/jqe.2020.3015482

    Article  CAS  Google Scholar 

  31. Zinenko TL, Matsushima A, Nosich AI (2020) Terahertz range resonances of metasurface formed by double-layer grating of microsize graphene strips inside dielectric slab. Proc R Soc A 476:20200173. https://doi.org/10.1098/rspa.2020.0173

    Article  Google Scholar 

  32. Zinenko TL, Matsushima A, Nosich AI (2017) Surface-plasmon, grating-mode, and slab-mode resonances in the h- and e-polarized thz wave scattering by a graphene strip grating embedded into a dielectric slab. IEEE J Select Topics Quantum Electron 23:1–9. https://doi.org/10.1109/jstqe.2017.2684082

    Article  Google Scholar 

  33. Nosich AA, Gandel YV (2007) Numerical analysis of quasioptical multireflector antennas in 2-D with the method of discrete singularities: E-wave case. IEEE Trans Antennas Propagat 55:399–406. https://doi.org/10.1109/tap.2006.889811

    Article  Google Scholar 

  34. Gandel’ YuV, Dushkin VD (2015) Mathematical model of scattering of polarized waves on impedance strips located on a screened dielectric layer. J Math Sci 212:156–166. https://doi.org/10.1007/s10958-015-2656-2

    Article  Google Scholar 

  35. Kaliberda ME, Pogarsky SA, Kaliberda LM (2020) Modeling of scattering of dielectric waveguide eigenwaves by system of graphene strips at THz. In 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO), IEEE. https://doi.org/10.1109/elnano50318.2020.9088799

  36. Kaliberda ME, Pogarsky SA, Kaliberda LM (2020) Radiation of planar dielectric waveguide eigenwaves scattered by graphene strip grating in THz Range. In 2020 14th European Conference on Antennas and Propagation (EuCAP), IEEE. https://doi.org/10.23919/eucap48036.2020.9135852

  37. Andrenko AS, Nosich AI (1992) H-scattering of thin-film modes from periodic gratings of finite extent. Microw Opt Technol Lett 5:333–337. https://doi.org/10.1002/mop.4650050715

    Article  Google Scholar 

  38. Nosich AI (1994) Radiation conditions, limiting absorption principle, and general relations in open waveguide scattering. Journal of Electromagnetic Waves and Applications 8:329–353. https://doi.org/10.1163/156939394x00902

    Article  Google Scholar 

  39. Guillemin EA (1935) Communication network, vol 1. John Wiley and Sons Inc, London

    Google Scholar 

  40. Kononenko OS, Gandel YV (2007) Singular and hypersingular integral equations techniques for gyrotron coaxial resonators with a corrugated insert. Int J Infrared Milli Waves 28:267–274. https://doi.org/10.1007/s10762-007-9198-8

    Article  Google Scholar 

  41. Lifanov IK (1996) Singular integral equations and discrete vortices. VSP, Utrecht

    Book  Google Scholar 

  42. Byelobrov VO, Zinenko TL, Kobayashi K, Nosich AI (2015) Periodicity matters: grating or lattice resonances in the scattering by sparse arrays of subwavelength strips and wires. IEEE Antennas Propag Mag 57:34–45. https://doi.org/10.1109/map.2015.2480083

    Article  Google Scholar 

  43. Lytvynenko LM, Prosvirnin SL (2012) Wave diffraction by periodic multilayer structures. Cambridge Scientific Publishers, Cambridge

    Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education and Science of Ukraine, grants 0119U002535 and 0117U004964.

Author information

Authors and Affiliations

Authors

Contributions

Mstislav E. Kaliberda carried out the derivation of equations, wrote the program code and performed computations, and participated in data analysis; Leonid M. Lytvynenko made the problem statement and participated in the derivation of basic equations; Sergey A. Pogarsky participated in data analysis, critically revised the manuscript, and helped draft the manuscript. All authors gave final approval for publication.

Corresponding author

Correspondence to Mstislav E. Kaliberda.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaliberda, M.E., Lytvynenko, L.M. & Pogarsky, S.A. Singular Integral Equations in Scattering of Planar Dielectric Waveguide Eigenwaves by the System of Graphene Strips at THz. Plasmonics 17, 505–517 (2022). https://doi.org/10.1007/s11468-021-01511-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01511-9

Keywords

Navigation