Skip to main content
Log in

The Tunability of Surface Plasmon Polaritons in Graphene Waveguide Structures

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The tunability of propagation properties of surface plasmon polariton (SPP) modes in a waveguide formed by two parallel graphene layers separated by a dielectric layer is studied. For this purpose, the dispersion equation of the structure is numerically solved and the effects of applied bias voltage, the role of effective structural parameters, and electron–phonon scattering rate on the propagation of symmetric and antisymmetric SPP waves are investigated. The results of calculations show that considering the electron–phonon scattering rate as a function of Fermi energy and temperature leads to a considerable decrease in the propagation length of SPPs. As the main result of this work, tuning the propagation characteristics of SPPs is possible by varying any of the parameters such as applied voltage, thickness of insulating layer between two graphene layers and permittivities of dielectric layers, and finally the temperature. It is found that antisymmetric mode benefits from a larger propagation length in comparison with that of the symmetric mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jung J, Pedersen TG (2013) Analysis of plasmonic properties of heavily doped semiconductors using full band structure calculations. J Appl Phys 113(11):114904

    Article  Google Scholar 

  2. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453

    Article  CAS  Google Scholar 

  3. Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16(26):21793–21800

    Article  CAS  Google Scholar 

  4. Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27(4):241–250

    Article  CAS  Google Scholar 

  5. Li R, Zheng B, Lin X, Hao R, Lin S, Yin W, Chen H (2016) Design of ultra-compact graphene-based superscatterers

  6. Li R, Lin X, Lin S, Liu X, Chen H (2015) Atomically thin spherical shell-shaped superscatterers based on a Bohr model. Nanotechnology 26(50):505201

    Article  Google Scholar 

  7. Li R. J, Lin X, Lin S. S, Liu X, Chen H. S (2015) Tunable deep-subwavelength superscattering using graphene monolayers. Opt Lett 40(8):1651–1654.

  8. Abergel DSL, Apalkov V, Berashevich J, Ziegler K, Chakraborty T (2010) Properties of graphene: a theoretical perspective. Adv Phys 59(4):261–482

    Article  CAS  Google Scholar 

  9. Maier S. A. (2007). Plasmonics: fundamentals and applications. Springer Science and Business Media

  10. Gan CH, Lalanne P (2010) Well-confined surface plasmon polaritons for sensing applications in the near-infrared. Opt Lett 35(4):610–612

    Article  CAS  Google Scholar 

  11. Holmgaard T, Bozhevolnyi SI (2007) Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides. Phys Rev B 75(24):245405

    Article  Google Scholar 

  12. Ashcroft N. W (1976) ND Mermin Solid state physics. WB Saunders Company

  13. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  14. Buslaev PI, Iorsh IV, Shadrivov IV, Belov PA, Kivshar YS (2013) Plasmons in waveguide structures formed by two graphene layers. JETP Lett 97(9):535–539

    Article  CAS  Google Scholar 

  15. Cheng J, Wang WL, Mosallaei H, Kaxiras E (2013) Surface plasmon engineering in graphene functionalized with organic molecules: a multiscale theoretical investigation. Nano Lett 14(1):50–56

    Article  Google Scholar 

  16. Bludov YV, Ferreira A, Peres NMR, Vasilevskiy MI (2013) A primer on surface plasmon-polaritons in graphene. International Journal of Modern Physics B 27(10):1341001

    Article  Google Scholar 

  17. Falkovsky L. A (2008) Optical properties of graphene. J Phys Confer Ser 129(1):012004. IOP Publishing

  18. Falkovsky LA, Varlamov AA (2007) Space-time dispersion of graphene conductivity. The European Physical Journal B 56(4):281–284

    Article  CAS  Google Scholar 

  19. Svintsov D, Vyurkov V, Ryzhii V, Otsuji T (2013) Voltage-controlled surface plasmon-polaritons in double graphene layer structures. J Appl Phys 113(5):053701

    Article  Google Scholar 

  20. Gan CH, Chu HS, Li EP (2012) Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies. Phys Rev B 85(12):125431

    Article  Google Scholar 

  21. Ahmadi E, Asgari A (2013) Carrier generation and recombination rate in armchair graphene nanoribbons. The European Physical Journal B 86(1):1–7

    Article  Google Scholar 

  22. Lazzeri M, Piscanec S, Mauri F, Ferrari AC, Robertson J (2006) Phonon linewidths and electron-phonon coupling in graphite and nanotubes. Phys Rev B 73(15):155426

    Article  Google Scholar 

  23. Peter Y. U, Cardona M (2010) Fundamentals of semiconductors: physics and materials properties. Springer Science and Business Media

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Asgari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoubafarin Doust, S., Siahpoush, V. & Asgari, A. The Tunability of Surface Plasmon Polaritons in Graphene Waveguide Structures. Plasmonics 12, 1633–1639 (2017). https://doi.org/10.1007/s11468-016-0428-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0428-6

Keywords

Navigation