Skip to main content
Log in

Nonuniformity of Phase Vortices and Singularity in Plasmonic Field Produced by Silver Spiral Slit Under Linearly Polarized Illumination

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We experimentally investigate the phase vortices and singularity in the surface plasmon polariton (SPP) field produced by oil-immersed silver spiral slit under illumination of linear polarized plane wave. Experimentally, the Mach-Zehnder interferometer system is constructed to detect the scattered SPP field with the phase retrieved from the interferogram. We find six nonuniform vortices and a singularity line segment in the central part of the slit. We propose the experiment method of assistive circular ring-slit to obtain the expression of the excited secondary SPP source and use the Huygens-Fresnel principle for the SPP wave propagations to explore the formation of vortices. From the experimental and the theoretically computed results, it is demonstrated that the topological charge of each vortex is nonuniform despite of its unity mean value. Based on the maps of phases and intensities, we find that the orbital angular momentum of a photon is azimuthally nonuniform and keeps almost unchanged in radial direction, and its density is approximately proportional to distance squared from the core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  2. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  CAS  Google Scholar 

  3. Drezet A, Hohenau A, Stepanov AL, Ditlbacher H, Steinberger B, Aussenegg FR, Leitner A, Krenn JR (2006) Surface plasmon polariton Mach–Zehnder interferometer and oscillation fringes. Plasmonics 1:141–145

    Article  CAS  Google Scholar 

  4. Maier SA, Friedman MD, Barclay PE, Painter O (2005) Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing. Appl Phys Lett 86:071103

    Article  Google Scholar 

  5. Christ A, Tikhodeev SG, Gippius NA, Kuhl J, Giessen H (2003) Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. Phys Rev Lett 91:183901

    Article  CAS  Google Scholar 

  6. Steele JM, Liu ZW, Wang Y, Zhang X (2006) Resonant and non-resonant generation and focusing of surface plasmons with circular gratings. Opt Express 14:5664–5670

    Article  Google Scholar 

  7. Lerman GM, Yanai A, Levy U (2009) Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized Light. Nano Lett 9:2139–2143

    Article  CAS  Google Scholar 

  8. Liu ZW, Steele JM, Srituravanich W, Pikus Y, Sun C, Zhang X (2005) Focusing surface plasmons with a plasmonic lens. Nano Lett 5:1726–1729

    Article  CAS  Google Scholar 

  9. Ishii SS, Shalaev VM, Kildishev AV (2013) Holey-metal lenses: sieving single modes with proper phases. Nano Lett 13:159–163

    Article  CAS  Google Scholar 

  10. Gao HW, Henzie J, Odom TW (2006) Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays. Nano Lett 6(9):2104–2018

    Article  CAS  Google Scholar 

  11. Lin J, Balthasar Mueller JP, Wang Q, Yuan GH, Antoniou N, Yuan XC, Capasso F (2013) Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340:331–334

    Article  CAS  Google Scholar 

  12. Franke-Arnold S, Allen L, Padgett M (2008) Advances in optical angular momentum. Laser Photon Rev 2:299–313

    Article  Google Scholar 

  13. Gahagan KT, Swartzlander GA (1999) Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap. J Opt Soc Am B 16:533

    Article  CAS  Google Scholar 

  14. Kivshar YS, Luther-Davies B (1998) Dark optical solitons: physics and applications. Phys Rep 298:81

    Article  Google Scholar 

  15. Liu AP, Rui GH, Ren XF, Zhan QW, Guo GC (2012) Encoding photonic angular momentum information onto surface plasmon polaritons with plasmonic lens. Opt Express 20:24151–24159

    Article  Google Scholar 

  16. Mair A, Vaziri A, Weihs G, Zeilinger A (2001) Entanglement of the orbital angular momentum states of photons. Nature 412:313–316

    Article  CAS  Google Scholar 

  17. Gorodetski Y, Niv A, Kleiner V, Hasman E (2008) Observation of the spin-based plasmonic effect in nanoscale structures. Phys Rev Lett 101:043903

    Article  CAS  Google Scholar 

  18. Yang S, Chen W, Nelson RL, Zhan QW (2009) Miniature circular polarization analyzer with spiral plasmonic lens. Opt Lett 34:3047–3049

    Article  Google Scholar 

  19. Chen W, Abeysinghe DC, Nelson RL, Zhan QW (2010) Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer. Nano Lett 10:2075–2079

    Article  CAS  Google Scholar 

  20. Kim H, Park J, Cho SW, Lee SY, Kang M, Lee B (2010) Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens. Nano Lett 10:529–536

    Article  CAS  Google Scholar 

  21. Yu H, Zhang H, Wang Y, Han S, Yang H, Xu X, Wang ZP, Petrov V, Wang JY (2013) Optical orbital angular momentum conservation during the transfer process from plasmonic vortex lens to light. Sci Reports 3:319

    Google Scholar 

  22. Ku CD, Huang WL, Huang JS, Huang CB (2013) Deterministic synthesis of optical vortices in tailored plasmonic Archimedes spiral. Photonics J IEEE 5:4800409

    Article  Google Scholar 

  23. Cho SW, Park J, Lee SY, Kim H, Lee B (2012) Coupling of spin and angular momentum of light in plasmonic vortex. Opt Express 20:10083–10094

    Article  Google Scholar 

  24. Rui GH, Nelson RL, Zhan QW (2012) Beaming photons with spin and orbital angular momentum via a dipole-coupled plasmonic spiral antenna. Opt Express 20:8819–8826

    Google Scholar 

  25. Chen WB, Rui GH, Abeysinghe DC, Nelson RL, Zhan QW (2012) Hybrid spiral plasmonic lens: towards an efficient miniature circular polarization analyzer. Opt Express 20:26299–26307

    Article  Google Scholar 

  26. Afshinmanesh F, White JS, Cai WS, Brongersma ML (2012) Measurement of the polarization state of light using an integrated plasmonic polarimeter. Nanophotonics 1:125–129

    Article  CAS  Google Scholar 

  27. Miao JJ, Wang YS, Guo CF, Tian Y, Guo SM, Liu Q, Zhou ZP (2011) Plasmonic lens with multiple-turn spiral nano-structures. Plasmonics 6:235–239

    Article  Google Scholar 

  28. Ziegler JI, Haglund RF Jr (2010) Plasmonic response of nanoscale spirals. Nano Lett 10:3013–3018

    Article  CAS  Google Scholar 

  29. Tsai WY, Huang JS, Huang CB (2014) Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic Archimedes spiral. Nano Lett 14:547–552

    Article  CAS  Google Scholar 

  30. Arnold SF, Allen L, Padgett M (2008) Advances in optical angular momentum. Laser Photonics Rev 2:299–313

    Article  Google Scholar 

  31. Teperik TV, Archambault A, Marquier F, Greffet JJ (2009) Huygens-Fresnel principle for surface plasmons. Opt Express 17:17483–17490

    Article  CAS  Google Scholar 

  32. Archambault TV, Teperik F, Marquier J, Greffet J (2009) Surface plasmon Fourier optics. Phys Rev B 79:195414

    Article  Google Scholar 

  33. Li X, Liang GT, Li ZH, Liu CX, Cheng CF (2013) Tetrad phase vortex structure in scattered SPP field produced by silver nano-ring-slit under linearly polarized illumination. Opt Express 21:18442–18451

    Article  Google Scholar 

  34. Shvartsman N, Freund I (1994) Vortices in random wave fields: nearest neighbor anticorrelations. Phys Rev Lett 72:1008

    Article  Google Scholar 

  35. Berry MV, Dennis MR (2001) Phase singularities in isotropic random waves. R Soc Lond A 456:2059–2079

    Article  Google Scholar 

  36. Wang W, Hanson SG, Miyamoto Y, Takeda M (2005) Experimental investigation of local properties and statistics of optical vortices in random wave fields. Phys Rev Lett 94:103902

    Article  Google Scholar 

  37. Dennis MR, Hamilton AC, Courtial J (2008) Superoscillation in speckle patterns. Opt Lett 33:2976–2978

    Article  Google Scholar 

  38. Jackson JD (1999) Classical electrodynamics. 262-265

  39. Freund I, Shvartsman N, Freilikher V (1993) Optical dislocation networks in highly random media. Opt Commun 101:247–264

    Article  Google Scholar 

  40. Yang XY, Liu HT, Lalanne P (2009) Cross conversion between surface plasmon polaritons and quasicylindrical waves. Phys Rev Lett 102:153903

    Article  CAS  Google Scholar 

Download references

Acknowledgments

National Natural Science Foundation of China (Grant No. 10974122) and Science and Technology Development Program of Shandong Province (Grant Nos. 2009GG and 10001005) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanfu Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Jiang, S., Li, Z. et al. Nonuniformity of Phase Vortices and Singularity in Plasmonic Field Produced by Silver Spiral Slit Under Linearly Polarized Illumination. Plasmonics 10, 585–594 (2015). https://doi.org/10.1007/s11468-014-9843-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9843-8

Keywords

Navigation