Skip to main content
Log in

Soliton patterns in the truncated M-fractional resonant nonlinear Schrödinger equation via modified Sardar sub-equation method

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

This article explores a noteworthy nonlinear model, namely the truncated M-fractional resonant nonlinear Schrödinger equation (RNLSE), incorporating a Kerr law nonlinearity. Various nonlinear phenomena in research domains like nonlinear optics, the atmospheric theory of deep water waves, quantum mechanics, plasma physics, and fluid dynamics can be formulated using the RNLSE. To gather various solitary wave solutions for the RNLSE, we utilize a modified version of the Sardar sub-equation method. Novel optical soliton solutions in trigonometric, hyperbolic, and exponential forms are derived. Visualization techniques, like 3D, 2D, density, and contour plots with different parameter values, effectively illustrate the diverse behaviors of soliton solutions. As a result, we attain an array of solutions, including bright, singular periodic, hyperbolic soliton, dark, periodic dark, combo dark–bright, compactons, kink, periodic, and singular kink soliton solutions. The method employed in this study is efficient, accurate, capable, and dependable for calculating soliton solutions in nonlinear models. We anticipate that the results obtained in this study hold significant potential for applications in optical fibers, plasma physics, nuclear physics, mathematical biosciences, and many more.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. Y. Zhou, Basic Theory of Fractional Differential Equations (World Scientific, Singapore, 2023)

    Book  Google Scholar 

  2. A.S. Rashed, A.N.M. Mostafa, A.M. Wazwaz, S.M. Mabrouk, Dynamical behavior and soliton solutions of the Jumarie’s space–time fractional modified Benjamin–Bona–Mahony equation in plasma physics. Roman. Rep. Phys. 75(1), 104 (2023)

    Google Scholar 

  3. Q. Wu, Research on deep learning image processing technology of second-order partial differential equations. Neural Comput. Appl. 35(3), 2183–2195 (2023)

    Article  Google Scholar 

  4. J. Ahmad, Z. Mustafa, J. Habib, Analyzing dispersive optical solitons in nonlinear models using an analytical technique and its applications. Opt. Quant. Electron. 56(1), 77 (2024)

    Article  ADS  Google Scholar 

  5. B.A. Malomed, Self-accelerating solitons. Europhys. Lett. 140, 22001 (2022)

    Article  ADS  Google Scholar 

  6. S. Saifullah, S. Shahid, A. Zada, Analysis of neutral stochastic fractional differential equations involving Riemann–Liouville fractional derivative with retarded and advanced arguments. Qual. Theory Dyn. Syst. 23(1), 39 (2024)

    Article  MathSciNet  Google Scholar 

  7. D. Lu, M. Suleman, M. Ramzan, J. Ul-Rahman, Numerical solutions of coupled nonlinear fractional KdV equations using He’s fractional calculus. Int. J. Mod. Phys. B 35(02), 2150023 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  8. M. Khan, N.K. Mahala, P. Kumar, Caputo derivative based nonlinear fractional order variational model for motion estimation in various application oriented spectrum. Sadhana 49(1), 1–28 (2024)

    MathSciNet  Google Scholar 

  9. M. Alabedalhadi, S. Al-Omari, M. Al-Smadi, S. Momani, D.L. Suthar, New chirp soliton solutions for the space–time fractional perturbed Gerdjikov–Ivanov equation with conformable derivative. Appl. Math. Sci. Eng. 32(1), 2292175 (2024)

    Article  MathSciNet  Google Scholar 

  10. K.J. Wang, F. Shi, A novel computational approach to the local fractional \((3+1)\)-dimensional modified Zakharov–Kuznetsov equation. Fractals 32(01), 2450026 (2024)

    Article  Google Scholar 

  11. K.J. Wang, New exact solutions of the local fractional modified equal width-Burgers equation on the Cantor sets. FRACTALS (fractals) 31(09), 1–9 (2023)

    Google Scholar 

  12. W. Razzaq, A. Zafar, H.M. Ahmed, W.B. Rabie, Construction of solitons and other wave solutions for generalized Kudryashov’s equation with truncated M-fractional derivative using two analytical approaches. Int. J. Appl. Comput. Math. 10(1), 21 (2024)

    Article  MathSciNet  Google Scholar 

  13. J. Ahmad, S. Akram, K. Noor, M. Nadeem, A. Bucur, Y. Alsayaad, Soliton solutions of fractional extended nonlinear Schrödinger equation arising in plasma physics and nonlinear optical fiber. Sci. Rep. 13(1), 10877 (2023)

    Article  ADS  Google Scholar 

  14. G. Akram, M. Sadaf, M.A.U. Khan, Soliton solutions of the resonant nonlinear Schrödinger equation using modified auxiliary equation method with three different nonlinearities. Math. Comput. Simul. 206, 1–20 (2023)

    Article  Google Scholar 

  15. M.I. Asjad, W.A. Faridi, S.E. Alhazmi, A. Hussanan, The modulation instability analysis and generalized fractional propagating patterns of the Peyrard–Bishop DNA dynamical equation. Opt. Quant. Electron. 55(3), 232 (2023)

    Article  Google Scholar 

  16. Y. Yildrim, A. Biswas, A. Dakova, P. Guggilla, S. Khan, H.M. Alshehri, M.R. Belic, Cubic–quartic optical solitons having quadratic–cubic nonlinearity by sine-Gordon equation approach. Ukr. J. Phys. Opt. 22(4), 255 (2021)

    Article  Google Scholar 

  17. E.M. Zayed, R.M. Shohib, M.E. Alngar, A. Biswas, Y. Yildirim, A. Dakova, M.R. Belic, Optical solitons in the Sasa–Satsuma model with multiplicative noise via Itô calculus. Ukr. J. Phys. Opt. 23(1), 9–14 (2022)

    Article  Google Scholar 

  18. M. Mf, A. Hm, Highly dispersive optical soliton perturbation with Kudryashov’s sextic-power law of nonlinear refractive index. Ukr. J. Phys. Opt. 23(1), 24 (2022)

    Article  Google Scholar 

  19. O. González-Gaxiola, A. Biswas, Y. Yildirim, H.M. Alshehri, Highly dispersive optical solitons in birefringent fibres with non-local form of nonlinear refractive index: Laplace–Adomian decomposition. Ukr. J. Phys. Opt. 23(2), 68–76 (2022)

    Article  Google Scholar 

  20. A. Biswas, J.M. Vega-Guzman, Y. Yildirim, S.P. Moshokoa, M. Aphane, A.A. Alghamdi, Optical solitons for the concatenation model with power-law nonlinearity: undetermined coefficients. Ukr. J. Phys. Opt. 24(3), 185 (2023)

    Article  Google Scholar 

  21. R. Kumar, R. Kumar, A. Bansal, A. Biswas, Y. Yildirim, S.P. Moshokoa, A. Asiri, Optical solitons and group invariants for Chen–Lee–Liu equation with time-dependent chromatic dispersion and nonlinearity by Lie symmetry. Ukr. J. Phys. Opt. 24(4), 4021 (2023)

    Article  Google Scholar 

  22. S.R. Ma, A.M. Em, B. Anjan, Y. Yakup, T. Houria, M. Luminita, A. Asim, Optical solitons in magneto-optic waveguides for the concatenation model. Ukr. J. Phys. Opt. 24(3), 248 (2023)

    Article  Google Scholar 

  23. A.R. Seadawy, S.T. Rizvi, B. Mustafa, K. Ali, Applications of complete discrimination system approach to analyze the dynamic characteristics of the cubic–quintic nonlinear Schrodinger equation with optical soliton and bifurcation analysis. Results Phys. 56, 107187 (2024)

    Article  Google Scholar 

  24. Y. Yildirim, A. Biswas, P. Guggilla, S. Khan, H.M. Alshehri, M.R. Belic, Optical solitons in fibre Bragg gratings with third-and fourth-order dispersive reflectivities. Ukr. J. Phys. Opt. 22(4), 239–254 (2021)

    Article  Google Scholar 

  25. A.H. Arnous, A. Biswas, A.H. Kara, Y. Yildirim, L. Moraru, C. Iticescu, A.A. Alghamdi, Optical solitons and conservation laws for the concatenation model with spatio-temporal dispersion (internet traffic regulation). J. Eur. Opt. Soc. Rapid Publ. 19(2), 35 (2023)

    Article  Google Scholar 

  26. A.Q. Aa, B. Am, M. Ashf, A. Aa, B. Ho, Dark and singular cubic-quartic optical solitons with Lakshmanan–Porsezian–Daniel equation by the improved Adomian decomposition scheme. Ukr. J. Phys. Opt. 24(1), 46 (2023)

    Article  Google Scholar 

  27. N. Jihad, M. Abd Almuhsan, Evaluation of impairment mitigations for optical fiber communications using dispersion compensation techniques. Rafidain J. Eng. Sci 1(1), 81–92 (2023)

    Article  Google Scholar 

  28. J. Ahmad, Z. Mustafa, J. Habib, Analyzing dispersive optical solitons in nonlinear models using an analytical technique and its applications. Opt. Quant. Electron. 56(1), 77 (2024)

    Article  ADS  Google Scholar 

  29. J. Ahmad, S. Rani, N.B. Turki, N.A. Shah, Novel resonant multi-soliton solutions of time fractional coupled nonlinear Schrödinger equation in optical fiber via an analytical method. Results Phys. 52, 106761 (2023)

    Article  Google Scholar 

  30. J. Ahmad, Z. Mustafa, N.B. Turki, N.A. Shah, Solitary wave structures for the stochastic Nizhnik–Novikov–Veselov system via modified generalized rational exponential function method. Results Phys. 52, 106776 (2023)

    Article  Google Scholar 

  31. M.M. Khater, Horizontal stratification of fluids and the behavior of long waves. Eur. Phys. J. Plus 138(8), 715 (2023)

    Article  Google Scholar 

  32. M.M. Khater, Abundant and accurate computational wave structures of the nonlinear fractional biological population model. Int. J. Mod. Phys. B 37(18), 2350176 (2023)

    Article  ADS  Google Scholar 

  33. M.M. Khater, Computational simulations of propagation of a tsunami wave across the ocean. Chaos Solit. Fractals 174, 113806 (2023)

    Article  MathSciNet  Google Scholar 

  34. M.M. Khater, Advancements in computational techniques for precise solitary wave solutions in the \((1+1)\)-dimensional Mikhailov–Novikov–Wang equation. Int. J. Theor. Phys. 62(7), 152 (2023)

    Article  MathSciNet  Google Scholar 

  35. M.M. Khater, In solid physics equations, accurate and novel soliton wave structures for heating a single crystal of sodium fluoride. Int. J. Mod. Phys. B 37(07), 2350068 (2023)

    Article  ADS  Google Scholar 

  36. M.M. Khater, Multi-vector with nonlocal and non-singular kernel ultrashort optical solitons pulses waves in birefringent fibers. Chaos Solit. Fractals 167, 113098 (2023)

    Article  MathSciNet  Google Scholar 

  37. M.M. Khater, Physics of crystal lattices and plasma; analytical and numerical simulations of the Gilson–Pickering equation. Results Phys. 44, 106193 (2023)

    Article  Google Scholar 

  38. M.M. Khater, Hybrid accurate simulations for constructing some novel analytical and numerical solutions of three-order GNLS equation. Int. J. Geom. Methods Mod. Phys. 20(09), 2350159 (2023)

    Article  MathSciNet  Google Scholar 

  39. K.S. Al-Ghafri, E.V. Krishnan, A. Biswas, Cubic–quartic optical soliton perturbation and modulation instability analysis in polarization-controlled fibers for Fokas–Lenells equation. J. Eur. Opt. Soc. Rapid Publ. 18(2), 9 (2022)

    Article  Google Scholar 

  40. S.U. Rehman, J. Ahmad, Diverse optical solitons to nonlinear perturbed Schrödinger equation with quadratic–cubic nonlinearity via two efficient approaches. Phys. Scr. 98(3), 035216 (2023)

    Article  ADS  Google Scholar 

  41. X. Lu, Y. Zhou, D. He, F. Zheng, K. Tang, J. Tang, A novel two-variable optimization algorithm of TCA for the design of face gear drives. Mech. Mach. Theory 175, 104960 (2022)

    Article  Google Scholar 

  42. M.M. Khater, Soliton propagation under diffusive and nonlinear effects in physical systems; \((1+1)\)-dimensional MNW integrable equation. Phys. Lett. A 480, 128945 (2023)

    Article  MathSciNet  Google Scholar 

  43. M.M. Khater, Characterizing shallow water waves in channels with variable width and depth; computational and numerical simulations. Chaos Solit. Fractals 173, 113652 (2023)

    Article  MathSciNet  Google Scholar 

  44. M.M. Khater, Novel computational simulation of the propagation of pulses in optical fibers regarding the dispersion effect. Int. J. Mod. Phys. B 37(09), 2350083 (2023)

    Article  ADS  Google Scholar 

  45. M.M. Khater, A hybrid analytical and numerical analysis of ultra-short pulse phase shifts. Chaos Solit. Fractals 169, 113232 (2023)

    Article  MathSciNet  Google Scholar 

  46. M.M. Khater, Prorogation of waves in shallow water through unidirectional Dullin–Gottwald–Holm model; computational simulations. Int. J. Mod. Phys. B 37(08), 2350071 (2023)

    Article  ADS  Google Scholar 

  47. M.M. Khater, Nonlinear elastic circular rod with lateral inertia and finite radius: dynamical attributive of longitudinal oscillation. Int. J. Mod. Phys. B 37(06), 2350052 (2023)

    Article  ADS  Google Scholar 

  48. M. Ozisik, A. Secer, M. Bayram, Retrieval of optical soliton solutions of stochastic perturbed Schrödinger–Hirota equation with Kerr law in the presence of spatio-temporal dispersion. Opt. Quant. Electron. 56(1), 1–17 (2024)

    Article  Google Scholar 

  49. M. Aphane, S.P. Moshokoa, H.M. Alshehri, Quiescent optical solitons with Kudryashov’s generalized quintuple-power and nonlocal nonlinearity having nonlinear chromatic dispersion: generalized temporal evolution. Ukr. J. Phys. Opt. 24(2), 105–113 (2023)

    Article  Google Scholar 

  50. E.M. Zayed, M.E. Alngar, R. Shohib, A. Biswas, Y. Yildirim, L. Moraru, P.L. Georgescu, C. Iticescu, A. Asiri, Highly dispersive solitons in optical couplers with metamaterials having Kerr law of nonlinear refractive index, Ukr. J. Phys. Opt. 25(1), 01001–01019 (2024)

    Article  Google Scholar 

  51. K. Al-Ghafri, E.V. Krishnan, A.B. Anjan Biswas, Y.Y. Yakup Yildirim, A.S.A. Ali Saleh Alshomrani, Cubic-quartic optical solitons with KUDRYASHOV S law of self-phase modulation. Ukr. J. Phys. Opt. 25(2), 02053–02068 (2024)

    Article  Google Scholar 

  52. A.M. Elsherbeny, M. Mirzazadeh, A.H. Arnous, A. Biswas, Y. Yildirim, A. Dakova, A. Asiri, Optical bullets and domain walls with cross spatio-dispersion and having Kudryashov’s form of self-phase modulation. Contemp. Math. 505–517 (2023)

  53. K.J. Wang, Soliton molecules and other diverse wave solutions of the \((2+1)\)-dimensional Boussinesq equation for the shallow water. Eur. Phys. J. Plus 138(10), 891 (2023)

    Article  Google Scholar 

  54. K.J. Wang, Soliton molecules, Y-type soliton and complex multiple soliton solutions to the extended \((3+1)\)-dimensional Jimbo–Miwa equation. Phys. Scr. 99(1), 015254 (2024)

    Article  ADS  Google Scholar 

  55. K.J. Wang, Resonant Y-type soliton, X-type soliton and some novel hybrid interaction solutions to the \((3+1)\)-dimensional nonlinear evolution equation for shallow-water waves. Phys. Scr. 99(2), 025214 (2024)

    Article  ADS  Google Scholar 

  56. K.J. Wang, F. Shi, Multi-soliton solutions and soliton molecules of the \((2+1)\)-dimensional Boiti–Leon–Manna–Pempinelli equation for the incompressible fluid. Europhys. Lett. (2024)

  57. K.J. Wang, J.H. Liu, F. Shi, On the semi-domain soliton solutions for the fractal \((3+1)\)-dimensional generalized Kadomtsev–Petviashvili–Boussinesq equation. Fractals 32(01), 2450024 (2024)

    Article  Google Scholar 

  58. K.J. Wang, Resonant multiple wave, periodic wave and interaction solutions of the new extended \((3+1)\)-dimensional Boiti–Leon–Manna–Pempinelli equation. Nonlinear Dyn. 111(17), 16427–16439 (2023)

    Article  Google Scholar 

  59. K.J. Wang, Dynamics of breather, multi-wave, interaction and other wave solutions to the new \((3+1)\)-dimensional integrable fourth-order equation for shallow water waves. Int. J. Numer. Methods Heat Fluid Flow 33(11), 3734–3747 (2023)

    Article  Google Scholar 

  60. K.J. Wang, On the generalized variational principle of the fractal Gardner equation. FRACTALS (fractals) 31(09), 1–6 (2023)

    Google Scholar 

  61. K.J. Wang, G.D. Wang, F. Shi, The pulse narrowing nonlinear transmission lines model within the local fractional calculus on the Cantor sets. In COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering (2023)

  62. A.M. Mubaraki, R.I. Nuruddeen, K.K. Ali, J.F. Gómez-Aguilar, Additional solitonic and other analytical solutions for the higher-order Boussinesq–Burgers equation. Opt. Quant. Electron. 56(2), 165 (2024)

    Article  Google Scholar 

  63. A. Ali, J. Ahmad, S. Javed, Dynamic investigation to the generalized Yu–Toda–Sasa–Fukuyama equation using Darboux transformation. Opt. Quant. Electron. 56(2), 166 (2024)

    Article  Google Scholar 

  64. A.J.M. Jawad, M.J. Abu-AlShaeer, Highly dispersive optical solitons with cubic law and cubic–quinticseptic law nonlinearities by two methods. Al-Rafidain J. Eng. Sci. 1(1), 1–8 (2023)

    Article  Google Scholar 

  65. M.A.S. Murad, H.F. Ismael, F.K. Hamasalh, N.A. Shah, S.M. Eldin, Optical soliton solutions for time-fractional Ginzburg–Landau equation by a modified sub-equation method. Results Phys. 53, 106950 (2023)

    Article  Google Scholar 

  66. A. Ali, J. Ahmad, S. Javed, S.U. Rehman, Analysis of chaotic structures, bifurcation and soliton solutions to fractional Boussinesq model. Phys. Scr. 98, 075217 (2023)

    Article  ADS  Google Scholar 

  67. W.A. Faridi, G.H. Tipu, Z. Myrzakulova, R. Myrzakulov, L. Akinyemi, Formation of optical soliton wave profiles of Shynaray-IIA equation via two improved techniques: a comparative study. Opt. Quant. Electron. 56(1), 132 (2024)

    Article  ADS  Google Scholar 

  68. Y. Chahlaoui, A. Ali, S. Javed, Study the behavior of soliton solution, modulation instability and sensitive analysis to fractional nonlinear Schrödinger model with Kerr Law nonlinearity. Ain Shams Eng. J. 15(3), 102567 (2024)

    Article  Google Scholar 

  69. A. Jawad, A. Biswas, Solutions of resonant nonlinear Schrödinger’s equation with exotic non-Kerr law nonlinearities. Al-Rafidain J. Eng. Sci. 2, 43–50 (2024)

    Google Scholar 

  70. L. Ling, X. Zhang, Large and infinite-order solitons of the coupled nonlinear Schrödinger equation. Physica D 457, 133981 (2024)

    Article  Google Scholar 

  71. S.A. El-Tantawy, A.H. Salas, M.R. Alharthi, On the analytical and numerical solutions of the linear damped NLSE for modeling dissipative freak waves and breathers in nonlinear and dispersive mediums: an application to a pair-ion plasma. Front. Phys. 9, 580224 (2021)

    Article  Google Scholar 

  72. M.M. Khater, In surface tension; gravity-capillary, magneto-acoustic, and shallow water waves’ propagation. Eur. Phys. J. Plus 138(4), 320 (2023)

    Article  Google Scholar 

  73. A.R. Seadawy, M. Bilal, M. Younis, S.T.R. Rizvi, Resonant optical solitons with conformable time-fractional nonlinear Schrödinger equation. Int. J. Mod. Phys. B 35(03), 2150044 (2021)

    Article  ADS  Google Scholar 

  74. G. Yel, H. Bulut, New wave approach to the conformable resonant nonlinear Schödinger’s equation with Kerr-law nonlinearity. Opt. Quant. Electron. 54(4), 252 (2022)

    Article  Google Scholar 

  75. Y. Sağlam-Özkan, E. Ünal-Yilmaz, Structures of exact solutions for the modified nonlinear Schrödinger equation in the sense of conformable fractional derivative. Math. Sci. 17(2), 203–218 (2023)

    Article  MathSciNet  Google Scholar 

  76. D. Chou, S.M. Boulaaras, H.U. Rehman, I. Iqbal, Probing wave dynamics in the modified fractional nonlinear Schrödinger equation: implications for ocean engineering. Opt. Quant. Electron. 56(2), 228 (2024)

    Article  Google Scholar 

  77. J. Ahmad, Z. Mustafa, Dynamics of exact solutions of nonlinear resonant Schrödinger equation utilizing conformable derivatives and stability analysis. Eur. Phys. J. D 77(6), 123 (2023)

    Article  ADS  Google Scholar 

  78. K.J. Wang, J.H. Liu, On abundant wave structures of the unsteady Korteweg–de Vries equation arising in shallow water. J. Ocean Eng. Sci. 8(6), 595–601 (2023)

    Article  Google Scholar 

  79. K.J. Wang, J. Si, Diverse optical solitons to the complex Ginzburg–Landau equation with Kerr law nonlinearity in the nonlinear optical fiber. Eur. Phys. J. Plus 138(3), 187 (2023)

    Article  ADS  Google Scholar 

  80. J. Ahmad, Z. Mustafa, M. Hameed, S. Alkarni, N.A. Shah, Dynamics characteristics of soliton structures of the new \((3+1)\) dimensional integrable wave equations with stability analysis. Results Phys. 107434, 1 (2024)

    Google Scholar 

  81. M.A.S. Murad, H.F. Ismael, F.K. Hamasalh, N.A. Shah, S.M. Eldin, Optical soliton solutions for time-fractional Ginzburg–Landau equation by a modified sub-equation method. Results Phys. 53, 106950 (2023)

    Article  Google Scholar 

  82. M. Mirzazadeh, A. Sharif, M.S. Hashemi, A. Akgül, S.M. El Din, Optical solitons with an extended \((3+1)\)-dimensional nonlinear conformable Schrödinger equation including cubic–quintic nonlinearity. Results Phys. 49, 106521 (2023)

    Article  Google Scholar 

  83. O. González-Gaxiola, A. Biswas, J. Ruiz de Chavez, A. Asiri, Bright and dark optical solitons for the concatenation model by the Laplace–Adomian decomposition scheme. Ukr. J. Phys. Opt. 24(3), 222 (2023)

    Article  Google Scholar 

  84. E.M. Zayed, M.E. Alngar, R. Shohib, A. Biswas, Y. Yildirim, C.M.B. Dragomir, L. Moraru, A. Asiri, Highly dispersive gap solitons in optical fibers with dispersive reflectivity having parabolic-nonlocal nonlinearity, Ukr. J. Phys. Opt. 25(1), 01033–01044 (2024)

    Article  Google Scholar 

  85. M. Elsherbeny-Ahmed, H. Arnous-Ahmed, J.A.J. Mohamad, B. Anjan, Y. Yildirim, M. Luminita, A.A. Saleh, Quescent optical solitons for the dispersive concatenation model with Kerr law nonlinearity having nonlinear chromatic dispersion (2024)

  86. A.R. Adem, A. Biswas, Y. Yildirim, A.J.M. Jawad, A.S. Alshomrani, Implicit quiescent optical solitons with generalized quadratic cubic form of self phase modulation and nonlinear chromatic dispersion by lie symmetry. Ukr. J. Phys. Opt. 25(2), 02016–02020 (2024)

    Article  Google Scholar 

  87. A.R. Adem, A. Biswas, Y. Yildirim, A.J.M. Jawad, A.S. Alshomrani, Implicit quiescent optical solitons for complex Ginzburg landau equation with generalized quadratic cubic form of self-phase modulation and nonlinear chromatic dispersion by lie symmetry. Ukr. J. Phys. Opt. 25(2), 02042–02047 (2024)

    Google Scholar 

  88. E.M. Zayed, K.A. Gepreel, M. El-Horbaty, A. Biswas, Y. Yildirim, H. Triki, A. Asiri, Optical solitons for the dispersive concatenation model. Contemp. Math. 4, 592–611 (2023)

    Article  Google Scholar 

  89. P. Albayrak, M. Ozisik, M. Bayram, A. Secer, S.E. Das, A. Biswas, A. Asiri, Pure-cubic optical solitons and stability analysis with Kerr law nonlinearity. Contemp. Math. 4, 530–548 (2023)

    Article  Google Scholar 

  90. A.R. Adem, A. Biswas, Y. Yildirim, A. Asiri, Implicit quiescent optical solitons for the dispersive concatenation model with nonlinear chromatic dispersion by lie symmetry. Contemp. Math. 4, 666–674 (2023)

    Article  Google Scholar 

  91. A.H. Arnous, A. Biswas, Y. Yildirim, A. Asiri, Quiescent optical solitons for the concatenation model having nonlinear chromatic dispersion with differential group delay. Contemp. Math. 4, 877–904 (2023)

    Article  Google Scholar 

  92. A. Biswas, J. Vega-Guzmán, Y. Yildirim, A. Asiri, Optical solitons for the dispersive concatenation model: undetermined coefficients. Contemp. Math. 4, 951–961 (2023)

    Article  Google Scholar 

  93. M.Y. Wang, A. Biswas, Y. Yildirim, A.S. Alshomrani, Optical solitons for the dispersive concatenation model with power-law nonlinearity by the complete discriminant approach. Contemp. Math. 4, 1249–1259 (2023)

    Article  Google Scholar 

  94. A.H. Arnous, A. Biswas, Y. Yildirim, A.S. Alshomrani, Stochastic perturbation of optical solitons for the concatenation model with power-law of self-phase modulation having multiplicative white noise. Contemp. Math. 5, 567–589 (2024)

    Article  Google Scholar 

  95. E. Topkara, D. Milovic, A. Sarma, F. Majid, A. Biswas, A study of optical solitons with Kerr and power law nonlinearities by He’s variational principle. J. Eur. Opt. Soc. Rapid Publ. 4, 09050 (2009)

    Article  Google Scholar 

  96. O. González-Gaxiola, A. Biswas, M.R. Belic, Optical soliton perturbation of Fokas–Lenells equation by the Laplace–Adomian decomposition algorithm. J. Eur. Opt. Soc. Rapid Publ. 15, 1–9 (2019)

    Article  Google Scholar 

  97. E.M. Zayed, M. El-Horbaty, M.E. Alngar, R.M. Shohib, A. Biswas, Y. Yildirim, A. Asiri, Dynamical system of optical soliton parameters by variational principle (super-Gaussian and super-sech pulses). J. Eur. Opt. Soc. Rapid Publ. 19(2), 38 (2023)

    Article  Google Scholar 

  98. M.M. Khater, Analyzing pulse behavior in optical fiber: novel solitary wave solutions of the perturbed Chen–Lee–Liu equation. Mod. Phys. Lett. B 37(34), 2350177 (2023)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

The authors declare that they have no any funding source.

Author information

Authors and Affiliations

Authors

Contributions

JA: Resources, acquisition, supervision, writing—review and editing, visualization, validation. MH: Conceptualization, methodology, software, writing—original draft. ZM: Conceptualization, methodology, writing—review and editing, formal analysis, validation, investigation, software. SUR: Software, formal analysis, writing-review and editing.

Corresponding author

Correspondence to Jamshad Ahmad.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Consent for publication

All authors have agreed and have given their consent for the publication of this research paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, J., Hameed, M., Mustafa, Z. et al. Soliton patterns in the truncated M-fractional resonant nonlinear Schrödinger equation via modified Sardar sub-equation method. J Opt (2024). https://doi.org/10.1007/s12596-024-01812-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01812-2

Keywords

Navigation