Skip to main content
Log in

Kink-like breathers in Bose-Einstein condensates with helicoidal spin-orbit coupling

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We report a kind of kink-like breathers in one-dimensional Bose-Einstein condensates (BECs) with helicoidal spin-orbit coupling (SOC), on whose two sides the background densities manifest obvious difference (called kink amplitude). The kink amplitude and shape of breather can be adjusted by the strength and period of helicoidal SOC, and its atomic number in two components exchanges periodically with time. The SOC has similar influence on the kink amplitude and the exchanged atomic number, especially when the background wave number is fixed. It indicates that the oscillating intensity of breather can be controlled by adjusting initial kink amplitude. Our work showcases the great potential of realizing novel types of breathers through SOC, and deepens our understanding on the formation mechanisms of breathers in BECs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Matuszewski, E. Infeld, B. A. Malomed, and M. Trippenbach, Fully three dimensional breather solitons can be created using Feshbach resonances, Phys. Rev. Lett. 95(5), 050403 (2005)

    Article  ADS  Google Scholar 

  2. M. Yu, J. K. Jang, Y. Okawachi, A. G. Griffith, K. Luke, S. A. Miller, X. Ji, M. Lipson, and A. L. Gaeta, Breather soliton dynamics in microresonators, Nat. Commun. 8(1), 14569 (2017)

    Article  ADS  Google Scholar 

  3. D. Luo, Y. Jin, J. H. V. Nguyen, B. A. Malomed, O. V. Marchukov, V. A. Yurovsky, V. Dunjko, M. Olshanii, and R. G. Hulet, Creation and characterization of matter-wave breathers, Phys. Rev. Lett. 125(18), 183902 (2020)

    Article  ADS  Google Scholar 

  4. E. A. Kuznetsov, Solitons in parametrically unstable plasma, Dokl. Akad. Nauk SSSR 236, 575 (1977)

    ADS  Google Scholar 

  5. Y. C. Ma, The perturbed plane-wave solutions of the cubic Schrödinger equation, Stud. Appl. Math. 60(1), 43 (1979)

    Article  ADS  MATH  Google Scholar 

  6. N. N. Akhmediev and V. I. Korneev, Modulation instability and periodic solutions of the nonlinear Schrödinger equation, Theor. Math. Phys. 69(2), 1089 (1986)

    Article  MATH  Google Scholar 

  7. M. Tajiri and Y. Watanabe, Breather solutions to the focusing nonlinear Schrödinger equation, Phys. Rev. E 57(3), 3510 (1998)

    Article  ADS  Google Scholar 

  8. C. Liu and N. Akhmediev, Super-regular breathers in nonlinear systems with self-steepening effect, Phys. Rev. E 100(6), 062201 (2019)

    Article  ADS  Google Scholar 

  9. C. Liu, Z. Y. Yang, and W. L. Yang, Growth rate of modulation instability driven by superregular breathers, Chaos 28(8), 083110 (2018)

    Article  ADS  Google Scholar 

  10. Y. H. Wu, C. Liu, Z. Y. Yang, and W. L. Yang, Breather interaction properties induced by self-steepening and space-time correction, Chin. Phys. Lett. 37(4), 040501 (2020)

    Article  ADS  Google Scholar 

  11. N. Akhmediev, J. M. Soto-Crespo, and A. Ankiewicz, How to excite a rogue wave, Phys. Rev. A 80(4), 043818 (2009)

    Article  ADS  Google Scholar 

  12. B. Frisquet, B. Kibler, and G. Millot, Collision of Akhmediev breathers in nonlinear fiber optics, Phys. Rev. X 3(4), 041032 (2013)

    Google Scholar 

  13. F. Baronio, A. Degasperis, M. Conforti, and S. Wabnitz, Solutions of the vector nonlinear schrödinger equations: Evidence for deterministic rogue waves, Phys. Rev. Lett. 109(4), 044102 (2012)

    Article  ADS  Google Scholar 

  14. B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, The Peregrine soliton in nonlinear fibre optics, Nat. Phys. 6(10), 790 (2010)

    Article  Google Scholar 

  15. H. Bailung, S. K. Sharma, and Y. Nakamura, Observation of peregrine solitons in a multicomponent plasma with negative ions, Phys. Rev. Lett. 107(25), 255005 (2011)

    Article  ADS  Google Scholar 

  16. A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, Rogue wave observation in a water wave tank, Phys. Rev. Lett. 106(20), 204502 (2011)

    Article  ADS  Google Scholar 

  17. C. Liu, Z. Y. Yang, L. C. Zhao, and W. L. Yang, Vector breathers and the inelastic interaction in a three-mode nonlinear optical fiber, Phys. Rev. A 89(5), 055803 (2014)

    Article  ADS  Google Scholar 

  18. C. Liu, Z. Y. Yang, W. L. Yang, and N. Akhmediev, Chessboard-like spatio-temporal interference patterns and their excitation, J. Opt. Soc. Am. B 36(5), 1294 (2019)

    Article  ADS  Google Scholar 

  19. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor, Science 269(5221), 198 (1995)

    Article  ADS  Google Scholar 

  20. Y. Zhang, M. E. Mossman, T. Busch, P. Engels, and C. Zhang, Properties of spin-orbit-coupled Bose-Einstein condensates, Front. Phys. 11(3), 118103 (2016)

    Article  ADS  Google Scholar 

  21. Y. J. Lin, K. Jiménez-García, and I. B. Spielman, Spinorbit-coupled Bose-Einstein condensates, Nature 471, 83 (2011)

    Article  ADS  Google Scholar 

  22. J. Dalibard, F. Gerbier, G. Juzeliunas, and P. Öhberg, Colloquium: Artificial gauge potentials for neutral atoms, Rev. Mod. Phys. 83(4), 1523 (2011)

    Article  ADS  Google Scholar 

  23. Y. Xu, Y. Zhang, and B. Wu, Bright solitons in spin-orbitcoupled Bose-Einstein condensates, Phys. Rev. A 87(1), 013614 (2013)

    Article  ADS  Google Scholar 

  24. V. Achilleos, D. J. Frantzeskakis, P. G. Kevrekidis, and D. E. Pelinovsky, Matter-wave bright solitons in spin-orbit coupled Bose-Einstein condensates, Phys. Rev. Lett. 110(26), 264101 (2013)

    Article  ADS  Google Scholar 

  25. V. Achilleos, J. Stockhofe, P. G. Kevrekidis, D. J. Frantzeskakis, and P. Schmelcher, Matter-wave dark solitons and their excitation spectra in spin-orbit coupled Bose-Einstein condensates, EPL 103(2), 20002 (2013)

    Article  ADS  Google Scholar 

  26. V. Achilleos, D. J. Frantzeskakis, P. G. Kevrekidis, P. Schmelcher, and J. Stockhofe, Positive and negative mass solitons in spin-orbit coupled Bose-Einstein condensates, arXiv: 1502.05574 (2015)

  27. L. C. Zhao, X. W. Luo, and C. Zhang, Magnetic stripe soliton and localized stripe wave in spin-1 Bose-Einstein condensates, Phys. Rev. A 101(2), 023621 (2020)

    Article  ADS  Google Scholar 

  28. Y. V. Kartashov and V. V. Konotop, Solitons in Bose-Einstein condensates with helicoidal spin-orbit coupling, Phys. Rev. Lett. 118(19), 190401 (2017)

    Article  ADS  Google Scholar 

  29. Y. A. Bychkov and E. I. Rashba, Oscillatory effects and the magnetic susceptibility of carriers in inversion layers, J. Phys. C 17(33), 6039 (1984)

    Article  ADS  Google Scholar 

  30. G. Dresselhaus, Spin-orbit coupling effects in zinc blende structures, Phys. Rev. 100(2), 580 (1955)

    Article  ADS  MATH  Google Scholar 

  31. X. W. Luo, K. Sun, and C. Zhang, Spin-tensor-momentum-coupled Bose-Einstein condensates, Phys. Rev. Lett. 119(19), 193001 (2017)

    Article  ADS  Google Scholar 

  32. R. X. Zhong, Z. P. Chen, C. Q. Huang, Z. H. Luo, H. S. Tan, B. A. Malomed, and Y. Y. Li, Self-trapping under two-dimensional spin-orbit coupling and spatially growing repulsive nonlinearity, Front. Phys. 13(4), 130311 (2018)

    Article  Google Scholar 

  33. S. W. Song, L. Wen, C. F. Liu, S. C. Gou, and W. M. Liu, Ground states, solitons and spin textures in spin-1 Bose-Einstein condensates, Front. Phys. 8(3), 302 (2013)

    Article  ADS  Google Scholar 

  34. Y. V. Kartashov, E. Y. Sherman, B. A. Malomed, and V. V. Konotop, Stable two-dimensional soliton complexes in Bose-Einstein condensates with helicoidal spin-orbit coupling, New J. Phys. 22(10), 103014 (2020)

    Article  ADS  Google Scholar 

  35. G. H. Chen, H. C. Wang, Z. P. Chen, and Y. Liu, Fundamental modes in waveguide pipe twisted by saturated double-well potential, Front. Phys. 12(1), 124201 (2017)

    Article  ADS  Google Scholar 

  36. K. Jiménez-García, L. J. LeBlanc, R. A. Williams, M. C. Beeler, C. Qu, M. Gong, C. Zhang, and I. B. Spielman, Tunable spin-orbit coupling via strong driving in ultracold-atom systems, Phys. Rev. Lett. 114(12), 125301 (2015)

    Article  ADS  Google Scholar 

  37. X. Luo, L. Wu, J. Chen, Q. Guan, K. Gao, Z. F. Xu, L. You, and R. Wang, Tunable atomic spin-orbit coupling synthesized with a modulating gradient magnetic field, Sci. Rep. 6(1), 18983 (2016)

    Article  ADS  Google Scholar 

  38. S. Manakov, On the theory of two-dimensional stationary self-focusing electromagnetic waves, J. Exp. Theor. Phys. 38, 248 (1974)

    ADS  Google Scholar 

  39. Y. Li, L. P. Pitaevskii, and S. Stringari, Quantum tricriticality and phase transitions in spin-orbit coupled Bose-Einstein condensates, Phys. Rev. Lett. 108(22), 225301 (2012)

    Article  ADS  Google Scholar 

  40. Y. Yang, P. Gao, Z. Wu, L. C. Zhao, and Z. Y. Yang, Matter-wave stripe solitons induced by helicoidal spin-orbit coupling, Ann. Phys. 431, 168562 (2021)

    Article  MATH  Google Scholar 

  41. B. Guo, L. Ling, and Q. P. Liu, Nonlinear Schrödinger equation: Generalized Darboux transformation and rogue wave solutions, Phys. Rev. E 85(2), 026607 (2012)

    Article  ADS  Google Scholar 

  42. C. Liu and N. Akhmediev, Super-regular breathers in nonlinear systems with self-steepening effect, Phys. Rev. E 100(6), 062201 (2019)

    Article  ADS  Google Scholar 

  43. L. Duan, Z. Y. Yang, P. Gao, and W. L. Yang, Excitation conditions of several fundamental nonlinear waves on continuous-wave background, Phys. Rev. E 99(1), 012216 (2019)

    Article  ADS  Google Scholar 

  44. L. C. Zhao and J. Liu, Localized nonlinear waves in a two-mode nonlinear fiber, J. Opt. Soc. Am. B 29(11), 3119 (2012)

    Article  ADS  Google Scholar 

  45. L. Ling, L. C. Zhao, and B. Guo, Darboux transformation and multi-dark soliton for N-component nonlinear Schrödinger equations, Nonlinearity 28(9), 3243 (2015)

    Article  ADS  MATH  Google Scholar 

  46. L. C. Zhao, C. Liu, and Z. Y. Yang, The rogue waves with quintic nonlinearity and nonlinear dispersion effects in nonlinear optical fibers, Commun. Nonlinear Sci. Numer. Simul. 20, 1007 (2014)

    Google Scholar 

  47. Y. H. Qin, Y. Wu, L. C. Zhao, and Z. Y. Yang, Interference properties of two-component matter wave solitons, Chin. Phys. B 29(2), 020303 (2020)

    Article  ADS  Google Scholar 

  48. L. Ling and L. C. Zhao, Integrable pair-transition-coupled nonlinear Schrödinger equations, Phys. Rev. E 92(2), 022924 (2015)

    Article  ADS  Google Scholar 

  49. N. Devine, A. Ankiewicz, G. Genty, J. M. Dudley, and N. Akhmediev, Recurrence phase shift in Fermi-Pasta-Ulam nonlinear dynamics, Phys. Lett. A 375, 4158 (2011)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11875220, 12047502, and 12022513).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan-Ying Yang.

Additional information

This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-021-1127-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Gao, P., Zhao, LC. et al. Kink-like breathers in Bose-Einstein condensates with helicoidal spin-orbit coupling. Front. Phys. 17, 32503 (2022). https://doi.org/10.1007/s11467-021-1127-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1127-0

Keywords

Navigation