Skip to main content
Log in

Cyclotron dynamics of a Bose—Einstein condensate in a quadruple-well potential with synthetic gauge fields

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We investigate the cyclotron dynamics of Bose-Einstein condensate (BEC) in a quadruple-well potential with synthetic gauge fields. We use laser-assisted tunneling to generate large tunable effective magnetic fields for BEC. The mean position of BEC follows an orbit that simulated the cyclotron orbits of charged particles in a magnetic field. In the absence of atomic interaction, atom dynamics may exhibit periodic or quasi-periodic cyclotron orbits. In the presence of atomic interaction, the system may exhibit self-trapping, which depends on synthetic gauge fields and atomic interaction strength. In particular, the competition between synthetic gauge fields and atomic interaction leads to the generation of several discontinuous parameter windows for the transition to self-trapping, which is obviously different from that without synthetic gauge fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80(3), 885 (2008)

    Article  ADS  Google Scholar 

  2. M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)

    Article  ADS  Google Scholar 

  3. Q. Niu, Advances on topological materials, Front. Phys. 15(4), 43601 (2020)

    Article  ADS  Google Scholar 

  4. M. Yang, X. L. Zhang, and W. M. Liu, Tunable topological quantum statesin three- and two-dimensional materials, Front. Phys. 10(2), 161 (2015)

    Article  ADS  Google Scholar 

  5. K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)

    Article  ADS  Google Scholar 

  6. D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two-dimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett. 48(22), 1559 (1982)

    Article  ADS  Google Scholar 

  7. R. B. Laughlin, Anomalous quantum hall effect: An incompressible quantum fluid with fractionally charged excitations, Phys. Rev. Lett. 50(18), 1395 (1983)

    Article  ADS  Google Scholar 

  8. D. Jaksch and P. Zoller, Creation of effective magnetic fields in optical lattices: The Hofstadter butterfly for cold neutral atoms, New J. Phys. 5, 56 (2003)

    Article  ADS  Google Scholar 

  9. N. Goldman, G. Juzeliūnas, P. Öhberg, and I. B. Spielman, Light-induced gauge fields for ultracold atoms, Rep. Prog. Phys. 77(12), 126401 (2014)

    Article  ADS  Google Scholar 

  10. F. Schäfer, T. Fukuhara, S. Sugawa, Y. Takasu, and Y. Takahashi, Tools for quantum simulation with ultracold atoms in optical lattices, Nat. Rev. Phys. 2(8), 411 (2020)

    Article  Google Scholar 

  11. D. W. Zhang, Z. D. Wang, and S. L. Zhu, Relativistic quantum effects of Dirac particles simulated by ultracold atoms, Front. Phys. 7(1), 31 (2012)

    Article  ADS  Google Scholar 

  12. A. L. Fetter, Rotating trapped Bose-Einstein condensates, Rev. Mod. Phys. 81(2), 647 (2009)

    Article  ADS  Google Scholar 

  13. J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, Artificial gauge potentials for neutral atoms, Rev. Mod. Phys. 83(4), 1523 (2011)

    Article  ADS  Google Scholar 

  14. I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys. 86(1), 153 (2014)

    Article  ADS  Google Scholar 

  15. N. R. Cooper, J. Dalibard, and I. B. Spielman, Topological bands for ultracold atoms, Rev. Mod. Phys. 91(1), 015005 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  16. K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Vortex formation in a stirred Bose-Einstein condensate, Phys. Rev. Lett. 84(5), 806 (2000)

    Article  ADS  Google Scholar 

  17. J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, Observation of vortex lattices in Bose-Einstein condensates, Science 292(5516), 476 (2001)

    Article  ADS  Google Scholar 

  18. S. Tung, V. Schweikhard, and E. A. Cornell, Observation of vortex pinning in Bose-Einstein condensates, Phys. Rev. Lett. 97(24), 240402 (2006)

    Article  ADS  Google Scholar 

  19. R. A. Williams, S. Al-Assam, and C. J. Foot, Observation of vortex nucleation in a rotating two-dimensional lattice of Bose-Einstein condensates, Phys. Rev. Lett. 104(5), 050404 (2010)

    Article  ADS  Google Scholar 

  20. N. R. Cooper, Rapidly rotating atomic gases, Adv. Phys. 57(6), 539 (2008)

    Article  ADS  Google Scholar 

  21. M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y. A. Chen, and I. Bloch, Experimental realization of strong effective magnetic fields in an optical lattice, Phys. Rev. Lett. 107(25), 255301 (2011)

    Article  ADS  Google Scholar 

  22. H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton, and W. Ketterle, Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices, Phys. Rev. Lett. 111(18), 185302 (2013)

    Article  ADS  Google Scholar 

  23. M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch, Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices, Phys. Rev. Lett. 111(18), 185301 (2013)

    Article  ADS  Google Scholar 

  24. M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y. A. Chen, and I. Bloch, Experimental realization of strong effective magnetic fields inoptical superlattice potentials, Appl. Phys. B 113(1), 1 (2013)

    Article  ADS  Google Scholar 

  25. M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider, J. Catani, C. Sias, P. Zoller, M. Inguscio, M. Dalmonte, and L. Fallani, Observation of chiral edge states with neutral fermions in synthetic Hall ribbons, Science 349(6255), 1510 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. B. K. Stuhl, H. I. Lu, L. M. Aycock, D. Genkina, and I. B. Spielman, Visualizing edge states with an atomic Bose gas in the quantum Hall regime, Science 349(6255), 1514 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, Optical atomic clocks, Rev. Mod. Phys. 87(2), 637 (2015)

    Article  ADS  Google Scholar 

  28. A. R. Kolovsky, Creating artificial magnetic fields for cold atoms by photon-assisted tunneling, Europhys. Lett. 93(2), 20003 (2011)

    Article  ADS  Google Scholar 

  29. J. Struck, C. Ölschläger, M. Weinberg, P. Hauke, J. Simonet, A. Eckardt, M. Lewenstein, K. Sengstock, and P. Windpassinger, Tunable gauge potential for neutral and spinless particles in driven optical lattices, Phys. Rev. Lett. 108(22), 225304 (2012)

    Article  ADS  Google Scholar 

  30. G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, Experimental realization of the topological Haldane model with ultracold fermions, Nature 515(7526), 237 (2014)

    Article  ADS  Google Scholar 

  31. L. W. Clark, B. M. Anderson, L. Feng, A. Gaj, K. Levin, and C. Chin, Observation of density-dependent gauge fields in a Bose-Einstein condensate based on micromotion control in a shaken two-dimensional lattice, Phys. Rev. Lett. 121(3), 030402 (2018)

    Article  ADS  Google Scholar 

  32. C. Schweizer, F. Grusdt, M. Berngruber, L. Barbiero, E. Demler, N. Goldman, I. Bloch, and M. Aidelsburger, Floquet approach to Z2 lattice gauge theories with ultracold atoms in optical lattices, Nat. Phys. 15(11), 1168 (2019)

    Article  Google Scholar 

  33. F. Görg, K. Sandholzer, J. Minguzzi, R. Desbuquois, M. Messer, and T. Esslinger, Realization of density-dependent Peierls phases to engineer quantized gauge fields coupled to ultracold matter, Nat. Phys. 15(11), 1161 (2019)

    Article  Google Scholar 

  34. V. Lienhard, P. Scholl, S. Weber, D. Barredo, S. de Léséleuc, R. Bai, N. Lang, M. Fleischhauer, H. P. Büchler, T. Lahaye, and A. Browaeys, Realization of a density-dependent Peierls phase in a synthetic, spin-orbit coupled Rydberg system, Phys. Rev. X 10(2), 021031 (2020)

    Google Scholar 

  35. C. J. Kennedy, W. C. Burton, W. C. Chung, and W. Ketterle, Observation of Bose-Einstein condensation in a strong synthetic magnetic field, Nat. Phys. 11(10), 859 (2015)

    Article  Google Scholar 

  36. G. J. Milburn, J. Corney, E. M. Wright, and D. F. Walls, Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential, Phys. Rev. A 55(6), 4318 (1997)

    Article  ADS  Google Scholar 

  37. A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Quantum coherent atomic tunneling between two trapped Bose-Einstein condensates, Phys. Rev. Lett. 79(25), 4950 (1997)

    Article  ADS  Google Scholar 

  38. M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and M. K. Oberthaler, Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction, Phys. Rev. Lett. 95(1), 010402 (2005)

    Article  ADS  Google Scholar 

  39. B. Wang, P. Fu, J. Liu, and B. Wu, Self-trapping of Bose-Einstein condensates in optical lattices, Phys. Rev. A 74(6), 063610 (2006)

    Article  ADS  Google Scholar 

  40. L. J. LeBlanc, A. B. Bardon, J. McKeever, M. H. T. Extavour, D. Jervis, J. H. Thywissen, F. Piazza, and A. Smerzi, Dynamics of a tunable superfluid junction, Phys. Rev. Lett. 106(2), 025302 (2011)

    Article  ADS  Google Scholar 

  41. P. G. Harper, Single band motion of conduction electrons in a uniform magnetic field, Proc. Phys. Soc. A 68(10), 874 (1955)

    Article  ADS  MATH  Google Scholar 

  42. D. R. Hofstadter, Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields, Phys. Rev. B 14(6), 2239 (1976)

    Article  ADS  Google Scholar 

  43. A. X. Zhang, Y. Zhang, Y. F. Jiang, Z. F. Yu, L. X. Cai, and J. K. Xue, Cyclotron dynamics of neutral atoms in optical lattices with additional magnetic field and harmonic trap potential, Chin. Phys. B 29(1), 010307 (2020)

    Article  ADS  Google Scholar 

  44. J. Liu, L. Fu, B. Y. Ou, S. G. Chen, D. I. Choi, B. Wu, and Q. Niu, Theory of nonlinear Landau-Zener tunneling, Phys. Rev. A 66(2), 023404 (2002)

    Article  ADS  Google Scholar 

  45. D. F. Ye, L. B. Fu, and J. Liu, Rosen-Zener transition in a nonlinear two-level system, Phys. Rev. A 77(1), 013402 (2008)

    Article  ADS  Google Scholar 

  46. G. F. Wang, L. B. Fu, and J. Liu, Periodic modulation effect on self-trapping of two weakly coupled Bose-Einstein condensates, Phys. Rev. A 73(1), 013619 (2006)

    Article  ADS  Google Scholar 

  47. J. Liu, L. B. Fu, B. Liu, and B. Wu, Role of particle interactions in the Feshbach conversion of fermionic atoms to bosonic molecules, New J. Phys. 10(12), 123018 (2008)

    Article  ADS  Google Scholar 

  48. J. Liu, B. Liu, and L. B. Fu, Many-body effects on nonadiabatic Feshbach conversion in bosonic systems, Phys. Rev. A 78(1), 013618 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  49. S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, Coherent oscillations between two weakly coupled Bose-Einstein condensates: Josephson effects, π oscillations, and macroscopic quantum self-trapping, Phys. Rev. A 59(1), 620 (1999)

    Article  ADS  Google Scholar 

  50. L. Fu and J. Liu, Quantum entanglement manifestation of transition to nonlinear self-trapping for Bose-Einstein condensates in a symmetric double well, Phys. Rev. A 74(6), 063614 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 12005173), the Natural Science Foundation of Gansu Province (Grant No. 20JR10RA082), the China Postdoctoral Science Foundation (Grant No. 2020M680318), and the NSAF (Grant Nos. U1930402 and U1930403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Liu.

Additional information

This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-021-1078-5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, WY., Lin, J. & Liu, J. Cyclotron dynamics of a Bose—Einstein condensate in a quadruple-well potential with synthetic gauge fields. Front. Phys. 16, 52502 (2021). https://doi.org/10.1007/s11467-021-1078-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1078-5

Keywords

Navigation