Skip to main content
Log in

Fundamental modes in waveguide pipe twisted by saturated double-well potential

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We study fundamental modes trapped in a rotating ring with a saturated nonlinear double-well potential. This model, which is based on the nonlinear Schrödinger equation, can be constructed in a twisted waveguide pipe in terms of light propagation, or in a Bose–Einstein condensate (BEC) loaded into a toroidal trap under a combination of a rotating π-out-of-phase linear potential and nonlinear pseudopotential induced by means of a rotating optical field and the Feshbach resonance. Three types of fundamental modes are identified in this model, one symmetric and the other two asymmetric. The shape and stability of the modes and the transitions between different modes are investigated in the first rotational Brillouin zone. A similar model used a Kerr medium to build its nonlinear potential, but we replace it with a saturated nonlinear medium. The model exhibits not only symmetry breaking, but also symmetry recovery. A specific type of unstable asymmetric mode is also found, and the evolution of the unstable asymmetric mode features Josephson oscillation between two linear wells. By considering the model as a configuration of a BEC system, the ground state mode is identified among these three types, which characterize a specific distribution of the BEC atoms around the trap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Gong and X. Hu, Ultrafast photonic crystal optical switching, Front. Phys. 1, 171 (2006)

    Google Scholar 

  2. Y. Liu, F. Qin, F. Zhou, Q. Meng, D. Zhang, and Z. Li, Ultrafast optical switching in Kerr nonlinear photonic crystals, Front. Phys. 5, 244 (2010)

    Google Scholar 

  3. M. Shen, B. Li, L. Ge, W. Chen, and D. Wu, Stability of vortex solitons under competing local and nonlocal cubic nonlinearities, Opt. Commun. 338, 27 (2015)

    Article  ADS  Google Scholar 

  4. Y. J. Xiang, X. Y. Dai, S. C. Wen, and D. Y. Fan, Modulation instability in metamaterials with saturable nonlinearity, J. Opt. Soc. Am. B 28(4), 908 (2011)

    Article  ADS  Google Scholar 

  5. T. R. O. Melvin, A. R. Champneys, P. G. Kevrekidis, and J. Cuevas, Travelling solitary waves in the discrete Schrodinger equation with saturable nonlinearity: Existence, stability and dynamics, Physica D 237(4), 551 (2008)

    MathSciNet  MATH  Google Scholar 

  6. F. Setzpfandt, A. A. Sukhorukov, and T. Pertsch, Discrete quadratic solitons with competing secondharmonic components, Phys. Rev. A 84(5), 053843 (2011)

    Article  ADS  Google Scholar 

  7. V. Lutsky and B. A. Malomed, One- and twodimensional solitons supported by singular modulation of quadratic nonlinearity, Phys. Rev. A 91(2), 023815 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  8. M. Shen, Y. Y. Lin, C. C. Jeng, and R. K. Lee, Vortex pairs in nonlocal nonlinear media, J. Opt. 14(6), 065204 (2012)

    Article  ADS  Google Scholar 

  9. M. Shen, J. S. Gao, and L. J. Ge, Solitons shedding from Airy beams and bound states of breathing Airy solitons in nonlocal nonlinear media, Sci. Rep. 5, 9814 (2015)

    Article  ADS  Google Scholar 

  10. Y. V. Kartashov, B. A. Malomed, and L. Torner, Solitons in nonlinear lattices, Rev. Mod. Phys. 83(1), 247 (2011)

    Article  ADS  Google Scholar 

  11. Y. S. Kivshar, Nonlinear Tamm states and surface effects in periodic photonic structures, Laser Phys. Lett. 5(10), 703 (2008)

    Article  ADS  Google Scholar 

  12. Y. V. Kartashov, A. Ferrando, A. A. Egorov, and L. Torner, Soliton topology versus discrete symmetry in optical lattices, Phys. Rev. Lett. 95(12), 123902 (2005)

    Article  ADS  Google Scholar 

  13. Y. Li, W. Pang, Y. Chen, Z. Yu, J. Zhou, and H. Zhang, Defect-mediated discrete solitons in optically induced photorefractive lattices, Phys. Rev. A 80(4), 043824 (2009)

    Article  ADS  Google Scholar 

  14. W. M. Liu, B. Wu, and Q. Niu, Nonlinear effects in interference of Bose–Einstein condensates, Phys. Rev. Lett. 84(11), 2294 (2000)

    Article  ADS  Google Scholar 

  15. Z. X. Liang, Z. D. Zhang, and W. M. Liu, Dynamics of a bright soliton in Bose–Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential, Phys. Rev. Lett. 94(5), 050402 (2005)

    Article  ADS  Google Scholar 

  16. A. C. Ji, W. M. Liu, J. L. Song, and F. Zhou, Dynamical creation of fractionalized vortices and vortex lattices, Phys. Rev. Lett. 101(1), 010402 (2008)

    Article  ADS  Google Scholar 

  17. E. A. Ostrovskaya and Y. S. Kivshar, Matter-wave gap solitons in atomic band-gap structures, Phys. Rev. Lett. 90(16), 160407 (2003)

    Article  ADS  Google Scholar 

  18. N. K. Efremidis and D. N. Christodoulides, Lattice solitons in Bose–Einstein condensates, Phys. Rev. A 67(6), 063608 (2003)

    Article  ADS  Google Scholar 

  19. H. Sakaguchi and B. A. Malomed, Matter-wave solitons in nonlinear optical lattices, Phys. Rev. E 72(4), 046610 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  20. B. B. Baizakov, B. A. Malomed, and M. Salerno, Matterwave solitons in radially periodic potentials, Phys. Rev. E 74(6), 066615 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  21. O. Morsch and M. Oberthaler, Dynamics of Bose–Einstein condensates in optical lattices, Rev. Mod. Phys. 78(1), 179 (2006)

    Article  ADS  Google Scholar 

  22. H. Sakaguchi and B. A. Malomed, Solitons in combined linear and nonlinear lattice potentials, Phys. Rev. A 81(1), 013624 (2010)

    Article  ADS  Google Scholar 

  23. Y. Li, B. A. Malomed, M. Feng, and J. Zhou, Double symmetry breaking of solitons in one-dimensional virtual photonic crystals, Phys. Rev. A 83(5), 053832 (2011)

    Article  ADS  Google Scholar 

  24. Y. Li, B. A. Malomed, J. Wu, W. Pang, S. Wang, and J. Zhou, Quasicompactons in inverted nonlinear photonic crystals, Phys. Rev. A 84(4), 043839 (2011)

    Article  ADS  Google Scholar 

  25. Y. Li, W. Pang, S. Fu, and B. A. Malomed, Twocomponent solitons with a spatially modulated linear coupling: Inverted photonic crystals and fused couplers, Phys. Rev. A 85(5), 053821 (2012)

    Article  ADS  Google Scholar 

  26. G. Chen, S. Zhang, and M. Wu, Optical solitons in a trinal-chennel inverted nonlinear photonic crystal, J. Nonlinear Opt. Phys. Mater. 22(01), 1350012 (2013)

    Article  ADS  Google Scholar 

  27. W. Pang, H. Guo, G. Chen, and Z. Mai, Symmetry breaking bifurcation of two-component soliton modes in an inverted nonlinear random lattice, J. Phys. Soc. Jpn. 83(3), 034402 (2014)

    Article  ADS  Google Scholar 

  28. J. Deng, J. Liu, S. Tan, Z. Huang, and Y. Li, Propagation dynamic of a Gaussian in the inverted nonlinear photonic crystals, Optik (Stuttg.) 125(15), 4088 (2014)

    Article  ADS  Google Scholar 

  29. H. Guo, Z. Chen, J. Liu, and Y. Li, Fundamental modes in a waveguide pipe twisted by inverted nonlinear doublewell potential, Laser Phys. 24(4), 045403 (2014)

    Article  ADS  Google Scholar 

  30. A. Szameit, J. Burghoff, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, Two-dimensional soliton in cubic fs laser written waveguide arrays in fused silica, Opt. Express 14(13), 6055 (2006)

    Article  ADS  Google Scholar 

  31. D. Blömer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte, and A. Tünnermann, Nonlinear refractive index of fs-laser-written waveguides in fused silica, Opt. Express 14(6), 2151 (2006)

    Article  ADS  Google Scholar 

  32. Y. Li, B. A. Malomed, M. Feng, and J. Zhou, Arrayed and checkerboard optical waveguides controlled by the electromagnetically induced transparency, Phys. Rev. A 82(6), 063813 (2010)

    Article  ADS  Google Scholar 

  33. J. Wu, M. Feng, W. Pang, S. Fu, and Y. Li, The transmission of quasi-discrete solitons in resonant waveguide arrays activated by the electromagnetically induced transparency, J. Nonlinear Opt. Phys. Mater. 20(02), 193 (2011)

    Article  ADS  Google Scholar 

  34. W. Pang, J. Wu, Z. Yuan, Y. Liu, and G. Chen, Lattice solitons in optical lattice controlled by electromagnetically induced transparency, J. Phys. Soc. Jpn. 80(11), 113401 (2011)

    Article  ADS  Google Scholar 

  35. H. Saito and M. Ueda, Emergence of Bloch bands in a rotating Bose–Einstein condensate, Phys. Rev. Lett. 93(22), 220402 (2004)

    Article  ADS  Google Scholar 

  36. S. Schwartz, M. Cozzini, C. Menotti, I. Carusotto, P. Bouyer, and S. Stringari, One-dimensional description of a Bose–Einstein condensate in a rotating closed-loop waveguide, New J. Phys. 8(8), 162 (2006)

    Article  ADS  Google Scholar 

  37. L. Wen, H. Xiong, and B. Wu, Hidden vortices in a Bose–Einstein condensate in a rotating double-well potential, Phys. Rev. A 82(5), 053627 (2010)

    Article  ADS  Google Scholar 

  38. Y. Li, W. Pang, and B. A. Malomed, Nonlinear modes and symmetry breaking in rotating double-well potentials, Phys. Rev. A 86(2), 023832 (2012)

    Article  ADS  Google Scholar 

  39. G. Chen, Z. Luo, J. Wu, and M. Wu, Switch between the types of the symmetry breaking bifurcation in optically induced photorefractive rotational double-well potential, J. Phys. Soc. Jpn. 82(3), 034401 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  40. Z. Luo, Y. Li, W. Pang, Y. Liu, and X. Wang, Double symmetry breaking of modes in dual-core rotating system, J. Phys. Soc. Jpn. 82(12), 124401 (2013)

    Article  ADS  Google Scholar 

  41. W. Pang, S. Fu, J. Wu, Y. Li, and Z. Mai, Nonlinear mode in rotating double-well potential with parity-time symmetry, Chin. Phys. B 23(10), 104214 (2014)

    Article  ADS  Google Scholar 

  42. J. Li, B. Liang, Y. Liu, P. Zhang, J. Zhou, S. O. Klimonsky, A. S. Slesarev, Y. D. Tretyakov, L. O’Faolain, and T. F. Krauss, Photonic crystal formed by the imaginary part of the refractive index, Adv. Mater. 22(24), 2676 (2010)

    Article  Google Scholar 

  43. M. Feng, Y. Liu, Y. Li, X. Xie, and J. Zhou, Light propagation in a resonantly absorbing waveguide array, Opt. Express 19(8), 7222 (2011)

    Article  ADS  Google Scholar 

  44. B. Liang, Y. Liu, J. Li, L. Song, Y. Li, J. Zhou, and K. S. Wong, Frabication of large-size photonic crystals by holographic lithography using a lens array, J. Micromech. Microeng. 22(3), 035013 (2012)

    Article  ADS  Google Scholar 

  45. Y. K. Liu, S. C. Wang, Y. Y. Li, L. Y. Song, X. S. Xie, M. N. Feng, Z. M. Xiao, S. Z. Deng, J. Y. Zhou, J. T. Li, K. Sing Wong, and T. F. Krauss, Effcient color routing with a dispersion-controlled waveguide array, Light Sci. Appl. 2(2), e52 (2013)

    Article  Google Scholar 

  46. L. M. Chiofalo, S. Succi, and P. M. Tosi, Ground state of trapped interacting Bose–Einstein condensates by an explicit imaginarytime algorithm, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(5), 7438 (2000)

    Google Scholar 

  47. J. Yang and T. I. Lakoba, Accelerated imaginarytime evolution methods for the computation of solitary waves, Stud. Appl. Math. 120(3), 265 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. L. Albuch and B. A. Malomed, Transitions between symmetric and asymmetric solitons in dual-core systems with cubicquintic nonlinearity, Math. Comput. Simul. 74(4-5), 312 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. G. Mazzarella and L. Salasnich, Spontaneous symmetry breaking and collapse in bosonic Josephson junctions, Phys. Rev. A 82(3), 033611 (2010)

    Article  ADS  Google Scholar 

  50. L. K. Lim, T. Troppenz, and C. M. Smith, Internal Josephson oscillations for distinct momenta Bose–Einstein condensates, Phys. Rev. A 84(5), 053609 (2011)

    Article  ADS  Google Scholar 

  51. J. Gillet, M. A. Garcia-March, T. Busch, and F. Sols, Tunneling, self-trapping, and manipulation of higher modes of a Bose–Einstein condensate in a double well, Phys. Rev. A 89, 023614 (2014)

    Google Scholar 

  52. G. Szirmai, G. Mazzarella, and L. Salasnich, Tunneling dynamics of bosonic Josephson junctions assisted by a cavity field, Phys. Rev. A 91(2), 023601 (2015)

    Article  ADS  Google Scholar 

  53. J. Javanainen and R. Rajapakse, Bayesian inference to characterize Josephson oscillations in a double-well trap, Phys. Rev. A 92, 023613 (2015)

    Article  ADS  Google Scholar 

  54. P. Pedri and L. Santos, Two-dimensional bright solitons in dipolar Bose–Einstein condensates, Phys. Rev. Lett. 95(20), 200404 (2005)

    Article  ADS  Google Scholar 

  55. R. Nath, P. Pedri, and L. Santos, Stability of dark solitons in three dimensional dipolar Bose–Einstein condensates, Phys. Rev. Lett. 101(21), 210402 (2008)

    Article  ADS  Google Scholar 

  56. I. Tikhonenkov, B. A. Malomed, and A. Vardi, Vortex solitons in dipolar Bose–Einstein condensates, Phys. Rev. A 78(4), 043614 (2008)

    Article  ADS  Google Scholar 

  57. Y. Li, J. Liu, W. Pang, and B. A. Malomed, Matterwave solitons supported by field-induced dipole-dipole repulsion with spatially modulated strength, Phys. Rev. A 88(5), 053630 (2013)

    Article  ADS  Google Scholar 

  58. I. Tikhonenkov, B. A. Malomed, and A. Vardi, Anisotropic solitons in dipolar Bose–Einstein condensates, Phys. Rev. Lett. 100(9), 090406 (2008)

    Article  ADS  Google Scholar 

  59. S. K. Adhikari, Self-trapping of a dipolar Bose–Einstein condensate in a double well, Phys. Rev. A 89(4), 043609 (2014)

    Article  ADS  Google Scholar 

  60. X. Jiang, Z. Fan, Z. Chen, W. Pang, Y. Li, and B. A. Malomed, Two-dimensional solitons in dipolar Bose–Einstein condensates with spin-orbit coupling, Phys. Rev. A 93(2), 023633 (2016)

    Article  ADS  Google Scholar 

  61. J. M. Junquera-Hernández, J. Sánchez-Marín, and D. Maynau, Molecular electric quadrupole moments calculated with matrix dressed SDCI, Chem. Phys. Lett. 359(3-4), 343 (2002)

    Article  ADS  Google Scholar 

  62. Y. Li, J. Liu, W. Pang, and B. A. Malomed, Lattice solitons with quadrupolar intersite interactions, Phys. Rev. A 88(6), 063635 (2013)

    Article  ADS  Google Scholar 

  63. J. Huang, X. Jiang, H. Chen, Z. Fan, W. Pang, and Y. Li, Quadrupolar matter-wave soliton in two-dimensional free space, Front. Phys. 10(4), 100507 (2015)

    Article  Google Scholar 

  64. D. N. Christodoulides, F. Lederer, and Y. Silberberg, Discretizing light behaviour in linear and nonlinear waveguide lattices, Nature 424(6950), 817 (2003)

    Article  ADS  Google Scholar 

  65. F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, Discrete solitons in optics, Phys. Rep. 463(1-3), 1 (2008)

    Article  ADS  Google Scholar 

  66. S. Flach and A. V. Gorbach, Discrete breathers Advances in theory and applications, Phys. Rep. 467(1-3), 1 (2008)

    Article  ADS  MATH  Google Scholar 

  67. X. Zhang, J. Chai, J. Huang, Z. Chen, Y. Li, and B. A. Malomed, Discrete solitons and scattering of lattice wave in guiding arrays with a nonlinear PT-symmetric defect, Opt. Express 22(11), 13927 (2014)

    Article  ADS  Google Scholar 

  68. Z. Chen, J. Liu, S. Fu, Y. Li, and B. A. Malomed, Discrete solitons and vortices on two-dimensional lattices of PT-symmetric couplers, Opt. Express 22(24), 29679 (2014)

    Article  ADS  Google Scholar 

  69. G. Chen, H. Huang, and M. Wu, Solitary vortices in two dimensional waveguide matrix, J. Nonlinear Opt. Phys. Mater. 24(01), 1550012 (2015)

    Article  ADS  Google Scholar 

  70. Z. Mai, S. Fu, J. Wu, and Y. Li, Discrete soliton in waveguide arrays with long-range linearly coupled effect, J. Phys. Soc. Jpn. 83(3), 034404 (2014)

    Article  ADS  Google Scholar 

  71. Z. Mai, W. Pang, J. Wu, and Y. Li, Symmetry breaking of discrete solitons in two-component waveguide arrays with long-range linearly coupled effect, J. Phys. Soc. Jpn. 84(1), 014401 (2015)

    Article  ADS  Google Scholar 

  72. J. Huang, H. Li, X. Zhang, and Y. Li, Transmission, reflection, scattering, and trapping of traveling discrete solitons by C and V point defects, Front. Phys. 10(2), 104201 (2015)

    MathSciNet  Google Scholar 

  73. Z. Chen, J. Huang, J. Chai, X. Zhang, Y. Li, and B. A. Malomed, Discrete solitons in self-defocusing systems with PT-symmetric defects, Phys. Rev. A 91(5), 053821 (2015)

    Article  ADS  Google Scholar 

  74. U. Al Khawaja, and A. A. Sukhorukov, Unidirectional ow of discrete solitons in waveguide arrays, Opt. Lett. 40(12), 2719 (2015)

    Article  ADS  Google Scholar 

  75. Z. Peng, H. Li, Z. Fan, X. Zhang, and Y. Li, All optical diode realized by one dimensional waveguide array, J. Nonlinear Opt. Phys. Mater. 24(02), 1550022 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Cheng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, GH., Wang, HC., Chen, ZP. et al. Fundamental modes in waveguide pipe twisted by saturated double-well potential. Front. Phys. 12, 124201 (2017). https://doi.org/10.1007/s11467-016-0601-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-016-0601-6

Keywords

Navigation