Skip to main content
Log in

Bose—Einstein condensates with tunable spin—orbit coupling in the two-dimensional harmonic potential: The ground-state phases, stability phase diagram and collapse dynamics

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We study the ground-state phases, the stability phase diagram and collapse dynamics of Bose—Einstein condensates (BECs) with tunable spin—orbit (SO) coupling in the two-dimensional harmonic potential by variational analysis and numerical simulation. Here we propose the theory that the collapse stability and collapse dynamics of BECs in the external trapping potential can be manipulated by the periodic driving of Raman coupling (RC), which can be realized experimentally. Through the high-frequency approximation, an effective time-independent Floquet Hamiltonian with two-body interaction in the harmonic potential is obtained, which results in a tunable SO coupling and a new effective two-body interaction that can be manipulated by the periodic driving strength. Using the variational method, the phase transition boundary and collapse boundary of the system are obtained analytically, where the phase transition between the spin-nonpolarized phase with zero momentum (zero momentum phase) and spin-polarized phase with non-zero momentum (plane wave phase) can be manipulated by the external driving and sensitive to the strong external trapping potential. Particularly, it is revealed that the collapsed BECs can be stabilized by periodic driving of RC, and the mechanism of collapse stability manipulated by periodic driving of RC is clearly revealed. In addition, we find that the collapse velocity and collapse time of the system can be manipulated by periodic driving strength, which also depends on the RC, SO coupling strength and external trapping potential. Finally, the variational approximation is confirmed by numerical simulation of Gross—Pitaevskii equation. Our results show that the periodic driving of RC provides a platform for manipulating the ground-state phases, collapse stability and collapse dynamics of the SO coupled BECs in an external harmonic potential, which can be realized easily in current experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation of Bose—Einstein condensation in a dilute atomic vapor, Science 269(5221), 198 (1995)

    Article  ADS  Google Scholar 

  2. K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Bose—Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett. 75(22), 3969 (1995)

    Article  ADS  Google Scholar 

  3. R. Rajan, P. R. Babu, and K. Senthilnathan, Photon condensation: A new paradigm for Bose—Einstein condensation, Front. Phys. 11(5), 110502 (2016)

    Article  ADS  Google Scholar 

  4. B. DeMarco and D. S. Jin, Onset of Fermi degeneracy in a trapped atomic gas, Science 285(5434), 1703 (1999)

    Article  Google Scholar 

  5. P. J. Wang and J. Zhang, Spin-orbit coupling in Bose—Einstein condensate and degenerate Fermi gases, Front. Phys. 9(5), 598 (2014)

    Article  ADS  Google Scholar 

  6. P. Hauke, F. M. Cucchietti, L. Tagliacozzo, I. Deutsch, and M. Lewenstein, Can one trust quantum simulators, Rep. Prog. Phys. 75(8), 082401 (2012)

    Article  ADS  Google Scholar 

  7. M. Ueda and A. J. Leggett, Macroscopic quantum tunneling of a Bose—Einstein condensate with attractive interaction, Phys. Rev. Lett. 80(8), 1576 (1998)

    Article  ADS  Google Scholar 

  8. H. Saito and M. Ueda, Dynamically stabilized bright solitons in a two-dimensional Bose—Einstein condensate, Phys. Rev. Lett. 90(4), 040403 (2003)

    Article  ADS  Google Scholar 

  9. P. Pedri and L. Santos, Two-dimensional bright solitons in dipolar Bose—Einstein condensates, Phys. Rev. Lett. 95(20), 200404 (2005)

    Article  ADS  Google Scholar 

  10. G. D. Montesinos, V. M. Perez-Garćia, and H. Michinel, Stabilized two-dimensional vector solitons, Phys. Rev. Lett. 92(13), 133901 (2004)

    Article  ADS  Google Scholar 

  11. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose—Einstein condensation in trapped gases, Rev. Mod. Phys. 71(3), 463 (1999)

    Article  ADS  Google Scholar 

  12. T. Koch, T. Lahaye, J. Metz, B. Fröhlich, A. Griesmaier, and T. Pfau, Stabilization of a purely dipolar quantum gas against collapse, Nat. Phys. 4(3), 218 (2008)

    Article  Google Scholar 

  13. C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases, Rev. Mod. Phys. 82(2), 1225 (2010)

    Article  ADS  Google Scholar 

  14. P. G. Kevrekidis, G. Theocharis, D. J. Frantzeskakis, and B. A. Malomed, Feshbach resonance management for Bose—Einstein condensates, Phys. Rev. Lett. 90(23), 230401 (2003)

    Article  ADS  Google Scholar 

  15. R. Horchani, Laser cooling of internal degrees of freedom of molecules, Front. Phys. 11(4), 113301 (2016)

    Article  ADS  Google Scholar 

  16. F. Kh. Abdullaev, J. G. Caputo, R. A. Kraenkel, and B. A. Malomed, Controlling collapse in Bose—Einstein condensates by temporal modulation of the scattering length, Phys. Rev. A 67(1), 013605 (2003)

    Article  ADS  Google Scholar 

  17. S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman, Stable 85Rb Bose—Einstein condensates with widely tunable interactions, Phys. Rev. Lett. 85(9), 1795 (2000)

    Article  ADS  Google Scholar 

  18. S. Sabari and B. Dey, Stabilization of trapless dipolar Bose—Einstein condensates by temporal modulation of the contact interaction, Phys. Rev. E 98(4), 042203 (2018)

    Article  ADS  Google Scholar 

  19. P. M. Lushnikov, Collapse of Bose—Einstein condensates with dipde—dipole interactions, Phys. Rev. A 051601(R) (2002)

  20. Y. J. Lin, R. L. Compton, K. Jiménez-García, J. V. Porto, and I. B. Spielman, Synthetic magnetic fields for ultracold neutral atoms, Nature 462(7273), 628 (2009)

    Article  ADS  Google Scholar 

  21. Y. J. Lin, R. L. Compton, K. Jimnez-Garca, W. D. Phillip, J. V. Porto, and I. B. Spielman, A synthetic electric force acting on neutral atoms, Nat. Phys. 7(7), 531 (2011)

    Article  Google Scholar 

  22. Y. J. Lin, K. Jiménez-García, and I. B. Spielman, Spin—orbit-coupled Bose—Einstein condensates, Nature 471(7336), 83 (2011)

    Article  ADS  Google Scholar 

  23. P. Wang, Z. Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, and J. Zhang, Spin—orbit coupled degenerate Fermi gases, Phys. Rev. Lett. 109(9), 095301 (2012)

    Article  ADS  Google Scholar 

  24. Z. Wu, L. Zhang, W. Sun, X. T. Xu, B. Z. Wang, S. C. Ji, Y. Deng, S. Chen, X. J. Liu, and J. W. Pan, Realization of two-dimensional spin—orbit coupling for Bose—Einstein condensates, Science 354(6308), 83 (2016)

    Article  ADS  Google Scholar 

  25. L. Huang, Z. Meng, P. Wang, P. Peng, S. L. Zhang, L. Chen, D. Li, Q. Zhou, and J. Zhang, Experimental realization of two-dimensional synthetic spin—orbit coupling in ultracold Fermi gases, Nat. Phys. 12(6), 540 (2016)

    Article  Google Scholar 

  26. D. Zhang, T. Gao, P. Zou, L. Kong, R. Li, X. Shen, X. L. Chen, S. G. Peng, M. Zhan, H. Pu, and K. Jiang, Ground-state phase diagram of a spin—orbital—angular—momentum coupled Bose—Einstein condensate, Phys. Rev. Lett. 122(11), 110402 (2019)

    Article  ADS  Google Scholar 

  27. W. Han, G. Juzeliūnas, W. Zhang, and W. M. Liu, Supersolid with nontrivial topological spin textures in spin—orbit-coupled Bose gases, Phys. Rev. A 91(1), 013607 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  28. Y. Zhang, M. E. Mossman, T. Busch, P. Engels, and C. Zhang, Properties of spin—orbit-coupled Bose—Einstein condensates, Front. Phys. 11(3), 118103 (2016)

    Article  ADS  Google Scholar 

  29. S. W. Song, L. Wen, C. F. Liu, S. C. Gou, and W. M. Liu, Ground states, solitons and spin textures in spin-1 Bose—Einstein condensates, Front. Phys. 8(3), 302 (2013)

    Article  ADS  Google Scholar 

  30. Y. K. Liu, H. X. Yue, L. L. Xu, and S. J. Yang, Vortex-pair states in spin—orbit-coupled Bose—Einstein condensates with coherent coupling, Front. Phys. 13(5), 130316 (2018)

    Article  Google Scholar 

  31. H. Sakaguchi, B. Li, and B. A. Malomed, Creation of two-dimensional composite solitons in spin—orbitcoupled self-attractive Bose—Einstein condensates in free space, Phys. Rev. E 89(3), 032920 (2014)

    Article  ADS  Google Scholar 

  32. Y. C. Zhang, Z. W. Zhou, B. A. Malomed, and H. Pu, Stable solitons in three dimensional free space without the ground state: self-trapped Bose—Einstein condensates with spin—orbit coupling, Phys. Rev. Lett. 115(25), 253902 (2012)

    Article  ADS  Google Scholar 

  33. V. Achilleos, D. J. Frantzeskakis, P. G. Kevrekidis, and D. E. Pelinovsky, Matter-wave bright solitons in spin—orbit coupled Bose—Einstein condensates, Phys. Rev. Lett. 110(26), 264101 (2013)

    Article  ADS  Google Scholar 

  34. S. Mardonov, E. Ya. Sherman, J. G. Muga, H. W. Wang, Y. Ban, and X. Chen, Collapse of spin—orbit-coupled Bose—Einstein condensates, Phys. Rev. A 91(4), 043604 (2012)

    Article  ADS  Google Scholar 

  35. Z. F. Yu, A. X. Zhang, R. A. Tang, H. P. Xu, J. M. Gao, and J. K. Xue, Spin—orbit-coupling stabilization of a collapsing binary Bose—Einstein condensate, Phys. Rev. A 95(3), 033607 (2017)

    Article  ADS  Google Scholar 

  36. T. Ozawa and G. Baym, Stability of ultracold atomic Bose condensates with Rashba spin—orbit coupling against quantum and thermal fluctuations, Phys. Rev. Lett. 109(2), 025301 (2012)

    Article  ADS  Google Scholar 

  37. R. X. Zhong, Z. P. Chen, C. Q. Huang, Z. H. Luo, H. S. Tan, B. A. Malomed, and Y. Y. Li, Self-trapping under two-dimensional spin—orbit coupling and spatially growing repulsive nonlinearity, Front. Phys. 13(4), 130311 (2018)

    Article  Google Scholar 

  38. Y. X. Yang, P. Gao, L. C. Zhao, and Z. Y. Yang, Kinklike breathers in Bose—Einstein condensates with helicoidal spin—orbit coupling, Front. Phys. 17(3), 32503 (2022)

    Article  ADS  Google Scholar 

  39. Y. Han, X. Q. Luo, T. F. Li, and W. Zhang, Analytical double-unitary-transformation approach for strongly and periodically driven three-level systems, Phys. Rev. A 101(2), 022108 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  40. M. Bukova, L. D. Alessioab, and A. Polkovnikova, Universal high-frequency behavior of periodically driven systems: From dynamical stabilization to Floquet engineering, Adv. Phys. 64, 139 (2012)

    Article  ADS  Google Scholar 

  41. A. Eckardt, Atomic quantum gases in periodically driven optical lattices, Rev. Mod. Phys. 89(1), 011004 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  42. Y. Zhang, G. Chen, and C. Zhang, Tunable Spin-orbit Coupling and Quantum Phase Transition in a Trapped Bose-Einstein Condensate, Sci. Rep. 3(1), 1937 (2013)

    Article  ADS  Google Scholar 

  43. K. Jiménez-García, L. J. LeBlanc, R. A. Williams, M. C. Beeler, C. Qu, M. Gong, C. Zhang, and I. B. Spielman, Tunable spin—orbit coupling via strong driving in ultra-cold-atom systems, Phys. Rev. Lett. 114(12), 125301 (2012)

    Article  ADS  Google Scholar 

  44. J. M. Gomez Llorente, and J. Plata, Periodic driving control of Raman-induced spin—orbit coupling in Bose—Einstein condensates: The heating mechanisms, Phys. Rev. A 93(6), 063633 (20

    Article  ADS  Google Scholar 

  45. M. Salerno, F. Kh. Abdullaev, A. Gammal, and L. Tomio, Tunable spin—orbit-coupled Bose—Einstein condensates in deep optical lattices, Phys. Rev. A 94(4), 043602 (2016)

    Article  ADS  Google Scholar 

  46. F. Kh. Abdullaev, M. Brtka, A. Gammal, and L. Tomio, Solitons and Josephson-type oscillations in Bose—Einstein condensates with spin—orbit coupling and time-varying Raman frequency, Phys. Rev. A 97(5), 053611 (2018)

    Article  ADS  Google Scholar 

  47. X. W. Luo and C. W. Zhang, Tunable spin—orbit coupling and magnetic superstripe phase in a Bose—Einstein condensate, Phys. Rev. A 100(6), 063606 (2019)

    Article  ADS  Google Scholar 

  48. J. C. Liang, Y. C. Zhang, C. Jiao, A. X. Zhang, and J. K. Xue, Ground-state phase and superfluidity of tunable spin—orbit-coupled Bose—Einstein condensates, Phys. Rev. E 103(2), 022204 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  49. Z. Lin, Phase diagrams of periodically driven spin—orbit coupled 87Rb and 23Na Bose—Einstein condensates, Ann. Phys. 533(1), 2000194 (2021)

    Article  Google Scholar 

  50. E. Kengne and W. M. Liu, Management of matter-wave solitons in Bose—Einstein condensates with time-dependent atomic scattering length in a time-dependent parabolic complex potential, Phys. Rev. E 98(1), 012204 (2018)

    Article  ADS  Google Scholar 

  51. E. A. Donley, N. R. Claussen, S. L. Cornish, J. L. Roberts, E. A. Cornell, and C. E. Wieman, Dynamics of collapsing and exploding Bose—Einstein condensates, Nature 412(6844), 295 (2001)

    Article  ADS  Google Scholar 

  52. Y. C. Xiong and L. Yin, Self-bound quantum droplet with internal stripe structure in one-dimensional spin—orbit-coupled Bose gas, Chin. Phys. Lett. 38(7), 070301 (2021)

    Article  ADS  Google Scholar 

  53. R. Sachdeva, M. N. Tengstrand, and S. M. Reimann, Self-bound supersolid stripe phase in binary Bose—Einstein condensates, Phys. Rev. A 102(4), 043304 (2020)

    Article  ADS  Google Scholar 

  54. J. Sanchez-Baena, J. Boronat, and F. Mazzanti, Supersolid striped droplets in a Raman spin—orbit-coupled system, Phys. Rev. A 102(5), 053308 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 12164042, 11764039, 11475027, 11865014, 12104374, 11964008, and 11847304; the Natural Science Foundation of Gansu Province under Grant Nos. 17JR5RA076, 20JR5RA194, and 20JR5RA526; the Scientific Research Project of Gansu Higher Education under Grant No. 2016A-005; the Innovation Capability Enhancement Project of Gansu Higher Education under Grant Nos. 2020A-146 and 2019A-014; the Creation of Science and Technology of Northwest Normal University under Grant No. NWNU-LKQN-18-33.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju-Kui Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, C., Liang, JC., Yu, ZF. et al. Bose—Einstein condensates with tunable spin—orbit coupling in the two-dimensional harmonic potential: The ground-state phases, stability phase diagram and collapse dynamics. Front. Phys. 17, 61503 (2022). https://doi.org/10.1007/s11467-022-1180-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1180-3

Keywords

Navigation