Skip to main content
Log in

Micromechanical mechanism-based anisotropic strength criteria for regularly arranged elliptical particle assembly

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Using the microstructural mechanics approach, the macroscopic anisotropic failure criteria expressed in closed form by the microscopic parameters are derived for regularly arranged elliptical particle assemblies. The close-packed, elliptical particle assembly is equivalent to a lattice model that is described by a lattice beam system, and the Mohr–Coulomb-like shear failure criterion is applied to describe the beam breakages. Through mechanical analysis of the instability state of the unit cell of the lattice beam system, macroscopic anisotropic strength criteria and the corresponding strength parameters, which are expressed by microscopic parameters and the tilting angle, are proposed. The macroscopic failure characteristics and strength parameters are qualitatively consistent with the results of the discrete element method (DEM), and the influences of the microscopic parameters and tilting angle on the macroscopic strength parameters are investigated in detail according to the proposed theoretical results. The applicability of the theoretical results to randomly distributed particles is explored by DEM simulation of irregularly arranged particles, and the deviation are also systematically discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\(a\), \(b\) :

Major and minor axes of the ellipse, respectively

c b :

Microscopic shear resistance

c :

Macroscopic cohesion

e :

Void ratio

f ih(i = n, s, m):

Internal force/moment at i direction of beam h at the middle section

F sh :

Shear strength of beam h

F x, F y :

External equivalent normal forces acting on the unit cells of lattice

\(k_{i}^{h}\)(i = n, s, m):

Contact stiffness at i direction of beam h

l h :

Length of beam h

m :

Major–minor axis ratio of elliptical particles

n :

Coordinate number

R s :

Peak shear force of bond

R t :

Peak tensile force of bond

T xy (T yx):

External equivalent shear forces acting on the unit cells of lattice

x i (i = n, s, m):

Relative displacement/rotation at i direction

α :

Angle between the direction along beam 2 or 3 and the vertical direction

γ :

Contact anisotropy ratio

δ :

Tilting angle

δ i (i = 0–4):

Critical tilting angle between different failure types

λ :

Tangential–normal contact stiffness ratio

μ b :

Microscopic friction coefficient of bond

ξ :

Rolling–normal contact stiffness ratio

σ x (σ y ):

Normal stress of the unit cell

τ x y (τ y x ):

Shear stress of the unit cell

φ :

Internal friction angle

References

  1. Arthur JRF, Menzies BK (1972) Inherent anisotropy in a sand. Géotechnique 22(1):128–130

    Article  Google Scholar 

  2. Azema E, Radjai F (2010) Stress–strain behavior and geometrical properties of packings of elongated particles. Phys Rev E 81(5):051304

    Article  Google Scholar 

  3. Brown NJ, Chen JF, Ooi JY (2014) A bond model for DEM simulation of cementitious materials and deformable structures. Granul Matter 16:299–311

    Article  Google Scholar 

  4. Cambou B (1998) Micromechanical approach in granular materials. In: Cambou B (ed) Behaviour of granular materials. International Centre for Mechanical Sciences, vol 385. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2526-7_3

    Chapter  MATH  Google Scholar 

  5. Cao W, Wang R, Zhang JM (2016) New strength criterion for sand with cross-anisotropy. Chin J Geotechn Eng 38(11):2026–2032

    Google Scholar 

  6. Chang CS (1995) Estimates of elastic moduli for granular material with anisotropic random packing structure. Int J Solids Struct 32(14):1989–2008

    Article  MATH  Google Scholar 

  7. Chang CS, Hicher PY (2005) An elasto-plastic model for granular materials with microstructural consideration. Int J Solids Struct 42(14):4258–4277

    Article  MATH  Google Scholar 

  8. Chang CS, Wang TK, Sluys LJ, Mier JGMV (2002) Fracture modeling using a micro-structural mechanics approach––I. theory and formulation. Eng Fract Mech 69(17):1941–1958

    Article  Google Scholar 

  9. Chang CS, Yin ZY (2010) Micromechanical modeling for inherent anisotropy in granular materials. J Eng Mech 136(7):830–839

    Article  MathSciNet  Google Scholar 

  10. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29(1):47–65

    Article  Google Scholar 

  11. Curray JR (1956) The analysis of two-dimensional orientation data. J Geol 64(2):117–131

    Article  Google Scholar 

  12. Duncan JM, Seed HB (1966) Strength variation along failure surfaces in clay. J Soil Mech Found Div (ASCE) 92(SM6):81–104

    Article  Google Scholar 

  13. Fu P, Dafalias YF (2010) Study of anisotropic shear strength of granular materials using DEM simulation. Int J Numer Anal Methods Geomech 35(10):1098–1126

    Article  Google Scholar 

  14. Gao ZW, Zhao JD, Yao YP (2010) A generalized anisotropic failure criterion for geomaterials. Int J Solids Struct 47(22–23):3166–3185

    Article  MATH  Google Scholar 

  15. Guo PJ, Stolle DFE (2005) On the failure of granular materials with fabric effects. Soils Found 45(4):1–12

    Article  Google Scholar 

  16. Hosseininia ES (2012) Discrete element modeling of inherently anisotropic granular assemblies with polygonal particles. Particuology 10(5):542–552

    Article  Google Scholar 

  17. Iordache MM, William K (1998) Localized failure analysis in elastoplastic Cosserat continua. Comput Meth Appl Mech Eng 151(3–4):559–586

    Article  MATH  Google Scholar 

  18. Jiang MJ, He J, Zhou YP (2014) Inter-particle bonded model of deep-sea methane hydrate-bearing soil considering methane hydrate bond thickness. Rock Soil Mech 35(5):1231–1240

    Google Scholar 

  19. Jiang MJ, Konrad JM, Leroueil S (2003) An efficient technique for generating homogeneous specimens for DEM studies. Comput Geotech 30(7):579–597

    Article  Google Scholar 

  20. Jiang MJ, Zhang A, Fu C (2018) 3-D DEM simulations of drained triaxial tests on inherently anisotropic granulates. Eur J Environ Civ Eng 22(S1):37–56

    Article  Google Scholar 

  21. Jiang MJ, Zhang N, Cui L, Jin SL (2015) A size-dependent bond failure criterion for cemented granules based on experimental studies. Comput Geotech 69:182–198

    Article  Google Scholar 

  22. Kodicherla SPK, Gong GB, Yang ZX, Krabbenhoft K, Fan L, Moy CKS, Wilkinson S (2019) The influence of particle elongations on direct shear behavior of Granular materials using DEM. Granul Matter 21(4):86

    Article  Google Scholar 

  23. Lade PV, Kirkgard MM (2000) Effects of stress rotation and changes of b-values on cross-anisotropic behavior of natural, K0-consolidated soft clay. Soils Found 40(6):93–105

    Article  Google Scholar 

  24. Leet K, Uang CM, Gilbert AM (2017) Fundamentals of structural analysis [M], 5th edn. McGraw-Hill Education, Chichester

    Google Scholar 

  25. Li XF, Huang MS, Qian JG (2010) Failure Criterion of anisotropic sand with method of macro-meso incorporation. Chin J Rock Mech Eng 29(9):1885–1892

    Google Scholar 

  26. Liu C, Pollard DD, Shi B (2013) Analytical solutions and numerical tests of elastic and failure behaviors of close-packed lattice for brittle rocks and crystals. J Geophys Res Solid Earth 118(1):71–82

    Article  Google Scholar 

  27. Liu C, Xu Q, Shi B, Deng S, Zhu HH (2017) Mechanical properties and energy conversion of 3D close-packed lattice model for brittle rocks. Comput Geosci 103:12–20

    Article  Google Scholar 

  28. Liu JD (2014) Constitutive model and numerical simulation of macro-micro behaviors of anisotropic structural sands. [Ph. D. Thesis] [D]. Shanghai: China: Tongji University

  29. Ng TT (2009) Particle shape effect on macro- and micro-behaviors of monodisperse ellipsoids. Int J Rock Mech Min Sci 33(4):511–527

    MATH  Google Scholar 

  30. Nishimura S, Minh NA, Jardine RJ (2007) Shear strength anisotropy of natural London Clay. Géotechnique 57(1):49–62

    Article  Google Scholar 

  31. Oda M, Koishikawa I, Higuchi T (1978) Experimental study of anisotropic shear strength of sand by plane strain test. Soils Found 18:25–38

    Article  Google Scholar 

  32. Oda M, Nakayama H (1989) Yield function for soil with anisotropic fabric. J Eng Mech 115(1):89–104

    Article  Google Scholar 

  33. Pietruszczak S, Mroz Z (2000) Formulation of anisotropic failure criteria incorporating a microstructure tensor. Comput Geotech 26(2):105–112

    Article  Google Scholar 

  34. Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364

    Article  Google Scholar 

  35. Qian JG, Du ZB, Yin ZY (2018) Cyclic degradation and non-coaxiality of soft clay subjected to pure rotation of principal stress directions. Acta Geotech 13:943–959

    Article  Google Scholar 

  36. Razeghi HR, Romiani HM (2015) Experimental investigation on the inherent and initial induced anisotropy of sand. KSCE J Civ Eng 19:583–591

    Article  Google Scholar 

  37. Schweiger HF, Wiltafsky C, Scharinger F, Galavi V (2009) A multilaminate framework for modelling induced and inherent anisotropy of soils. Géotechnique 59(2):87–101

    Article  Google Scholar 

  38. Tatsuoka F, Sakamoto M, Kawamura T, Fukushima S (1986) Strength and deformation characteristics of sand in plane strain compression at extremely low pressures. Solids Found 26(1):65–84

    Article  Google Scholar 

  39. Tong Z, Fu P, Zhou S, Dafalias YF (2014) Experimental investigation of shear strength of sands with inherent fabric anisotropy. Acta Geotech 9:257–275

    Article  Google Scholar 

  40. Wang YC, Mora P (2008) Macroscopic elastic properties of regular lattices. J Mech Phys Solids 56(12):3459–3474

    Article  MathSciNet  MATH  Google Scholar 

  41. Walton K (1987) The effective elastic modulus of a random packing of spheres. J Mech Phys Solids 35(2):213–226

    Article  MATH  Google Scholar 

  42. Wang YK, Guo L, Gao YF, Qiu Y, Hu XQ, Zhang Y (2016) Anisotropic drained deformation behavior and shear strength of natural soft marine clay. Mar Geores Geotechnol 34(5):493–502

    Article  Google Scholar 

  43. Wu S, Xu X (2016) A study of three intrinsic problems of the classic discrete element method using flat-joint model. Rock Mech Rock Eng 49:1813–1830

    Article  Google Scholar 

  44. Yin ZY, Wang P (2021) Micro-mechanical analysis of caisson foundation in sand using DEM: particle shape effect. Appl Ocean Res 111:102630

    Article  Google Scholar 

  45. Yin ZY, Chang CS, Hicher PY (2010) Micromechanical modelling for effect of inherent anisotropy on cyclic behaviour of sand. Int J Solids Struct 47(14–15):1933–1951

    Article  MATH  Google Scholar 

  46. Zhang LW (2007) Research on failure mechanism and strength criterion of anisotropic granular materials and its application [Ph. D. Thesis] [D]. Beijing: China: Tsinghua University

  47. Zhang LW, Zhang JM, Zhang G (2008) SMP-based anisotropic strength criteria of granular materials. Chin J Geotech Eng 30(08):1107–1111

    Google Scholar 

  48. Zhang Q, Rao Q, Shen QQ, Li Z (2021) Study on correlation of macro-meso parameters of flat joint model of particle flow code based on central composite design method. J Cent South Univ (Sci Technol) 52(03):779–789

    Google Scholar 

  49. Zhou ZH, Wang HN, Jiang MJ (2021) Elastic constants obtained analytically from microscopic features for regularly arranged elliptical particle assembly. Granul Matter 23:1–13

    Article  Google Scholar 

  50. Zhou ZH, Wang HN, Jiang MJ (2023) Strength criteria at anisotropic principal directions expressed in closed form by interparticle parameters for elliptical particle assembly. Granul Matter 25(1):1

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Major Program of National Natural Science Foundation of China (Grant No. 51890911), the National Natural Science Foundation of China (Grant Nos. 12272274, 11872281), the Hainan Province Science and Technology Special Fund (Grant No. ZDYF2021SHFZ264), the Fundamental Research Funds for the Central Universities (Grant No. 22120230302) and the State Key Laboratory of Disaster Reduction in Civil Engineering (Grant No. SLDRCE19-A-06). This support was greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaning Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Fig. A1
figure 17

Force analysis of the unit cell

Figure A1 shows the force analysis of the unit cell in Fig. 2d, where F1, F2 and F3 are the redundant axial force, shear force and bending moment, respectively, of rigid beams 4 and 7. According to the symmetric characteristic of the unit, Fi (i = 1, 2 and 3) in beams 4 and 7 are equal.

\(\delta_{ij}\) and \(\Delta_{{i{\text{P}}}}\) represent the displacement in the Fi (= 1, 2 and 3) direction induced by the unit redundant force \(\overline{F}_{j} (j = {1, 2, 3})\) and external forces Fx, Fy and Txy. They can be calculated by the principle of virtual work as follows:

$$\delta_{ij} = \sum\limits_{1}^{n} {\int\limits_{{l_{h} }} {\frac{{\overline{M}_{ih} \overline{M}_{jh} {\text{d}}s}}{{l_{h} k_{mh} }}} + } \sum\limits_{1}^{n} {\int\limits_{{l_{h} }} {\frac{{\overline{F}_{{{\text{N}}ih}} \overline{F}_{{{\text{N}}jh}} {\text{d}}s}}{{l_{h} k_{nh} }}} } + \sum\limits_{1}^{n} {\int\limits_{{l_{h} }} {\frac{{k\overline{F}_{{{\text{S}}ih}} \overline{F}_{{{\text{S}}jh}} {\text{d}}s}}{{l_{h} k_{sh} }}} } ,$$
(A-1)
$$\Delta_{{i{\text{P}}}} = \sum\limits_{1}^{n} {\int\limits_{{l_{h} }} {\frac{{\overline{M}_{ih} M_{{{\text{P}}h}} {\text{d}}s}}{{l_{h} k_{mh} }}{ + }\sum\limits_{1}^{n} {\int\limits_{{l_{h} }} {\frac{{\overline{F}_{{{\text{N}}ih}} \overline{F}_{{{\text{NP}}h}} {\text{d}}s}}{{l_{h} k_{nh} }}{ + }\sum\limits_{1}^{n} {\int\limits_{{l_{h} }} {\frac{{k\overline{F}_{{{\text{S}}ih}} \overline{F}_{{{\text{SP}}h}} {\text{d}}s}}{{l_{h} k_{sh} }}} } } } } } ,$$
(A-2)

where \(k_{ih}\)(i = n, s, m) and lh are the contact stiffness along i direction and length of beam h, respectively; k is a parameter related to the shape of the cross section; and n = 9 represents the number of rigid beams. Additionally, \(\overline{F}_{{{\text{N}}i}}^{h}\), \(\overline{F}_{{{\text{S}}i}}^{h}\) and \(\overline{M}_{i}^{h}\) (\(F_{{{\text{NP}}}}^{h}\), \(F_{{{\text{SP}}}}^{h}\) and \(M_{{\text{P}}}^{h}\)) are the axial force, shear force and bending moment, respectively, of beam h induced by the unit redundant force \(\overline{F}_{i}\) (external forces Fx, Fy and Txy) of the rigid beam (beams 4 and 7) force. Note that to keep consistent with the theoretical derivation, the material constants of original principle of virtual work [24] are replaced by contact stiffesses \(k_{i}\) in this study according to the relations between material constants and contact stiffesses [3]. According to the typical equations of the force method in structure mechanics, \(\delta_{ij} F_{i} + \Delta_{ip} = 0\), the redundant force Fi of rigid beams 4 and 7 can be expressed as:

$$\left\{ {\begin{array}{*{20}l} {F_{1} = \frac{{\delta_{33} \Delta_{1p} - \delta_{13} \Delta_{3p} }}{{\delta_{13}^{2} - \delta_{11} \delta_{33} }} = AF_{x} + BF_{y} } \hfill \\ {F_{2} = \frac{{ - \Delta_{2p} }}{{\delta_{22} }} = ET_{xy} } \hfill \\ {F_{3} = \frac{{\delta_{11} \Delta_{3p} - \delta_{13} \Delta_{1p} }}{{\delta_{13}^{2} - \delta_{11} \delta_{33} }} = CF_{x} + DF_{y} } \hfill \\ \end{array} ,} \right.$$
(A-3)

where

$$A{ = }\frac{1}{{\frac{{l_{2}^{2} \cos^{2} \alpha }}{6} \cdot \frac{\gamma }{\xi } + 2\left[ {1 + \gamma \left( {\sin^{2} \alpha + \frac{1}{\lambda }\cos^{2} \alpha } \right)} \right]}},\;B{ = }\frac{{\left[ {2\left( {\frac{{l_{2}^{2} }}{3}\frac{1}{\xi } - 1 + \frac{1}{\lambda }} \right) - \frac{{l_{2}^{2} }}{2}\frac{1}{\xi }} \right]\sin \alpha \cos \alpha }}{{\frac{1}{3}l_{2}^{2} \cos^{2} \alpha \frac{1}{\xi }{ + }4\left( {\frac{1}{\gamma } + \sin^{2} \alpha + \cos^{2} \alpha \frac{1}{\lambda }} \right)}},$$
(A-4)
$$C{ = } - \frac{{l_{2} \cos \alpha /\gamma }}{{\frac{1}{3}l_{2}^{2} \cos^{2} \alpha \frac{1}{\xi } + 4\left( {\frac{1}{\gamma } + \sin^{2} \alpha + \frac{1}{\lambda }\cos^{2} \alpha } \right)}},\;D{ = }\frac{{l_{2} \sin \alpha \left( {1 + 1/\gamma } \right)}}{{\frac{1}{3}l_{2}^{2} \cos^{2} \alpha \frac{1}{\xi } + 4\left( {\frac{1}{\gamma } + \sin^{2} \alpha + \frac{1}{\lambda }\cos^{2} \alpha } \right)}},$$
(A-5)
$$E = - \frac{{ - \frac{2}{3}\cos^{2} \alpha + \frac{2}{\gamma \lambda } + \frac{{2m^{2} \sin^{2} \alpha }}{\lambda } + \frac{1}{\xi }\frac{{a(2l_{1} + l_{4} )}}{12} + \frac{1}{\gamma \xi }\frac{{al_{1} }}{12}\frac{{m^{2} + 1}}{{m^{2} }}}}{{4\cos^{2} \alpha + \frac{4}{\gamma \lambda } + \frac{4}{\lambda }\sin^{2} \alpha + \frac{{l_{1} (l_{1} + 2l_{4} )}}{3\xi } + \frac{{l_{1}^{2} }}{3\gamma \xi }}}.$$
(A-6)

Substituting Eq. (1) and the lengths of beams in Table 1 into Eqs. (A-4) and (A-6), we obtain the dimensionless strength coefficients shown in Eqs. (1315). After the redundant force of rigid beams 4 and 7 is determined, the internal forces of all remaining beams can be obtained in Eqs. (1012) by force analysis of the statically determinate structure.

Appendix B

O, P, Q in Eq. (29) can be expressed as:

$$\begin{aligned} O\; = \; & (a_{1}^{2} b_{2}^{2} + 4a_{1}^{2} c_{2}^{2} - 2a_{1} a_{2} b_{1} b_{2} - 8a_{1} a_{2} c_{1} c_{2} - 2a_{1} b_{1} b_{2} c_{2} + 2a_{1} b_{2}^{2} c_{1} + a_{2}^{2} b_{1}^{2} + 4a_{2}^{2} c_{1}^{2} + 2a_{2} b_{1}^{2} c_{2} - 2a_{2} b_{1} b_{2} c_{1} + b_{1}^{2} c_{2}^{2} \\ & - 2b_{1} b_{2} c_{1} c_{2} + b_{2}^{2} c_{1}^{2} ) \times \sigma_{3}^{2} + (4d_{2} a_{1}^{2} c_{2} - 4d_{2} a_{1} a_{2} c_{1} - 4d_{1} a_{1} a_{2} c_{2} - 2d_{2} a_{1} b_{1} b_{2} + 2d_{1} a_{1} b_{2}^{2} - 4d_{2} a_{1} c_{1} c_{2} + 4d_{1} a_{1} c_{2}^{2} \\ & + 4d_{1} a_{2}^{2} c_{1} + 2d_{2} a_{2} b_{1}^{2} - 2d_{1} a_{2} b_{1} b_{2} + 4d_{2} a_{2} c_{1}^{2} - 4d_{1} a_{2} c_{1} c_{2} + 2d_{2} b_{1}^{2} c_{2} - 2d_{2} b_{1} b_{2} c_{1} - 2d_{1} b_{1} b_{2} c_{2} + 2d_{1} b_{2}^{2} c_{1} ) \times \sigma_{3} \\ & + b_{1}^{2} d_{2}^{2} + b_{2}^{2} d_{1}^{2} - 4a_{1} c_{1} d_{2}^{2} - 4a_{2} c_{2} d_{1}^{2} + 4a1c_{2} d_{1} d_{2} + 4a_{2} c_{1} d_{1} d_{2} - 2b_{1} b_{2} d_{1} d_{2} , \\ \end{aligned}$$
$$P = \left( {2a_{1} c_{2} - 2a_{2} c_{1} } \right) \times \sigma_{3} + 2c_{2} d_{1} - 2c_{1} d_{2} ,\;\;Q{ = }\left( {a_{1} b_{2} - a_{2} b_{1} - b_{1} c_{2} + b_{2} c_{1} } \right) \times \sigma_{3} ,$$

where ai, bi, ci and di (i = 1, 2) for δij can be expressed as:

δ12: \(a_{1} = 2mB\), \(a_{2} = \left[ {\left( {\frac{1}{2} - \sqrt 3 mB} \right) - \mu_{p} \left( {B + \frac{\sqrt 3 m}{2}} \right)} \right]\), \(b_{1} = 0\), \(b_{2} = - \frac{\sqrt 3 }{m}\left[ {C + \frac{{m^{2} }}{2} + \sqrt 3 m\mu_{p} \left( {\frac{1}{6} - E} \right)} \right]\),

\(c_{1} = \sqrt 3 (2A - 1)\), \(c_{2} = - A\left( {3 + \frac{{\sqrt 3 \mu_{p} }}{m}} \right)\), \(d_{1} = - mR_{t} /a\), \(d_{2} = - \sqrt {3m^{2} + 1} c_{p} /a\);

δ23: \(a_{1} = \left[ {\left( {\frac{1}{2} - \sqrt 3 mB} \right) - \mu_{p} \left( {B + \frac{\sqrt 3 m}{2}} \right)} \right]\), \(a_{2} = \left( {B + \frac{\sqrt 3 m}{2}} \right)\), \(b_{1} = - \frac{\sqrt 3 }{m}\left[ {C + \frac{{m^{2} }}{2} + \sqrt 3 m\mu_{p} \left( {\frac{1}{6} - C} \right)} \right]\), \(b_{2} = 3\left( {\frac{1}{6} - C} \right)\), \(c_{1} = - A\left( {3 + \frac{{\sqrt 3 \mu_{p} }}{m}} \right)\), \(c_{2} = \frac{\sqrt 3 A}{m}\) \(d_{1} = - \sqrt {3m^{2} + 1} c_{p} /a\), \(d_{2} = \sqrt {3m^{2} + 1} R_{t} /a\);

δ-23: \(a_{1} = \left[ {\left( {\frac{1}{2} - \sqrt 3 mB} \right){ + }\mu_{p} \left( {B + \frac{\sqrt 3 m}{2}} \right)} \right]\), \(a_{2} = \left( {B + \frac{\sqrt 3 m}{2}} \right)\), \(b_{1} = - \frac{\sqrt 3 }{m}\left[ {C + \frac{{m^{2} }}{2} - \sqrt 3 m\mu_{p} \left( {\frac{1}{6} - C} \right)} \right]\), \(b_{2} = 3\left( {\frac{1}{6} - C} \right)\), \(c_{1} = - A\left( {3 - \frac{{\sqrt 3 \mu_{p} }}{m}} \right)\), \(c_{2} = \frac{\sqrt 3 A}{m}\) \(d_{1} = \sqrt {3m^{2} + 1} c_{p} /a\), \(d_{2} = \sqrt {3m^{2} + 1} R_{t} /a\);

δ34: \(a_{1} = \left[ {\left( {\sqrt 3 Bm - \frac{1}{2}} \right) - \mu_{p} \left( {B + \frac{\sqrt 3 m}{2}} \right)} \right]\), \(a_{2} = \left( {B + \frac{\sqrt 3 m}{2}} \right)\), \(b_{1} = - \frac{\sqrt 3 }{m}\left[ {C + \frac{{m^{2} }}{2} + \sqrt 3 m\mu_{p} \left( {C - \frac{1}{6}} \right)} \right]\), \(b_{2} = 3\left( {\frac{1}{6} - C} \right)\), \(c_{1} = A\left( {3 - \frac{{\sqrt 3 \mu_{p} }}{m}} \right)\), \(c_{2} = \frac{\sqrt 3 A}{m}\) \(d_{1} = - \sqrt {3m^{2} + 1} c_{p} /a\), \(d_{2} = \sqrt {3m^{2} + 1} R_{t} /a\);

δ24: \(a_{1} = \left[ {\left( {\frac{1}{2} - \sqrt 3 mB} \right) - \mu_{p} \left( {B + \frac{\sqrt 3 m}{2}} \right)} \right]\), \(a_{2} = \left[ {\left( {\sqrt 3 Bm - \frac{1}{2}} \right) - \mu_{p} \left( {B + \frac{\sqrt 3 m}{2}} \right)} \right]\), \(c_{1} = - A\left( {3 + \frac{{\sqrt 3 \mu_{p} }}{m}} \right)\).

\(b_{1} = b_{2} = - \frac{\sqrt 3 }{m}\left[ {C + \frac{{m^{2} }}{2} + \sqrt 3 m\mu_{p} \left( {\frac{1}{6} - C} \right)} \right]\), \(c_{2} = A\left( {3 - \frac{{\sqrt 3 \mu_{p} }}{m}} \right)\), \(d_{1} = d_{2} = - \sqrt {3m^{2} + 1} c_{p} /a\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Wang, H. & Jiang, M. Micromechanical mechanism-based anisotropic strength criteria for regularly arranged elliptical particle assembly. Acta Geotech. (2023). https://doi.org/10.1007/s11440-023-02109-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11440-023-02109-7

Keywords

Navigation