Skip to main content
Log in

A Study of Three Intrinsic Problems of the Classic Discrete Element Method Using Flat-Joint Model

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Discrete element methods have been proven to offer a new avenue for obtaining the mechanics of geo-materials. The standard bonded-particle model (BPM), a classic discrete element method, has been applied to a wide range of problems related to rock and soil. However, three intrinsic problems are associated with using the standard BPM: (1) an unrealistically low unconfined compressive strength to tensile strength (UCS/TS) ratio, (2) an excessively low internal friction angle, and (3) a linear strength envelope, i.e., a low Hoek–Brown (HB) strength parameter m i . After summarizing the underlying reasons of these problems through analyzing previous researchers’ work, flat-joint model (FJM) is used to calibrate Jinping marble and is found to closely match its macro-properties. A parametric study is carried out to systematically evaluate the micro-parameters’ effect on these three macro-properties. The results indicate that (1) the UCS/TS ratio increases with the increasing average coordination number (CN) and bond cohesion to tensile strength ratio, but it first decreases and then increases with the increasing crack density (CD); (2) the HB strength parameter m i has positive relationships to the crack density (CD), bond cohesion to tensile strength ratio, and local friction angle, but a negative relationship to the average coordination number (CN); (3) the internal friction angle increases as the crack density (CD), bond cohesion to tensile strength ratio, and local friction angle increase; (4) the residual friction angle has little effect on these three macro-properties and mainly influences post-peak behavior. Finally, a new calibration procedure is developed, which not only addresses these three problems, but also considers the post-peak behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Ai J, Chen J-F, Rotter JM, Ooi JY (2011) Assessment of rolling resistance models in discrete element simulations. Powder Technol 206(3):269–282. doi:10.1016/j.powtec.2010.09.030

    Article  Google Scholar 

  • Altindag R, Guney A (2010) Predicting the relationships between brittleness and mechanical properties (UCS, TS and SH) of rocks. Sci Res Essays 5(16):2107–2118

    Google Scholar 

  • Bardet J (1994) Observations on the effects of particle rotations on the failure of idealized granular materials. Mech Mater 18(2):159–182. doi:10.1016/0167-6636(94)00006-9

    Article  Google Scholar 

  • Chen W, Konietzky H (2014) Simulation of heterogeneity, creep, damage and lifetime for loaded brittle rocks. Tectonophysics 633:164–175. doi:10.1016/j.tecto.2014.06.033

    Article  Google Scholar 

  • Chen W, Konietzky H, Abbas SM (2015) Numerical simulation of time-independent and-dependent fracturing in sandstone. Eng Geol 193:118–131. doi:10.1016/j.enggeo.2015.04.021

    Article  Google Scholar 

  • CUNDALL PA (1971) A computer model for simulating progressive, large scale movements in blocky rock systems. In: Proceedings of the international symposium on rock mechanics, Nancy II, Art.8

  • Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29(1):47–65. doi:10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  • Diederichs MS (1999) Instability of hard rockmasses: the role of tensile damage and relaxation. Ph.D Thesis, University of Waterloo, Canada

  • Diederichs M (2003) Manuel rocha medal recipient rock fracture and collapse under low confinement conditions. Rock Mech Rock Eng 36(5):339–381. doi:10.1007/s00603-003-0015-y

    Article  Google Scholar 

  • Ding X, Zhang L (2011) Simulation of rock fracturing using particle flow modeling: phase I—model development and calibration. In: 45th US rock mechanics/geomechanics symposium, June 26–29, San Francisco, California

  • Ding X, Zhang L (2014) A new contact model to improve the simulated ratio of unconfined compressive strength to tensile strength in bonded particle models. Int J Rock Mech Min Sci 69:111–119. doi:10.1016/j.ijrmms.2014.03.008

    Google Scholar 

  • Ding X, Zhang L, Zhu H, Zhang Q (2014) Effect of model scale and particle size distribution on PFC3D simulation results. Rock Mech Rock Eng 47(6):2139–2156. doi:10.1007/s00603-013-0533-1

    Article  Google Scholar 

  • Fairhurst C, Cook N (1966) The phenomenon of rock splitting parallel to the direction of maximum compression in the neighborhood of a surface. In: Proceedings of the first congress on the international society of rock mechanics, 1: 687–692

  • Fakhimi A (2004) Application of slightly overlapped circular particles assembly in numerical simulation of rocks with high friction angles. Eng Geol 74(1):129–138. doi:10.1016/j.enggeo.2004.03.006

    Article  Google Scholar 

  • Goktan R, Yilmaz NG (2005) A new methodology for the analysis of the relationship between rock brittleness index and drag pick cutting efficiency. J S Afr Inst Min Metall 105(10):727

    Google Scholar 

  • Goodman RE (1989) Introduction to rock mechanics. Wiley, New York

    Google Scholar 

  • Hoek E, Brown ET (1980) Empirical strength criterion for rock masses. J Geotech Geoenviron Eng 106(ASCE 15715)

  • Hoek E, Brown E (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34(8):1165–1186. doi:10.1016/S1365-1609(97)80069-X

    Article  Google Scholar 

  • Holt R, Kjølaas J, Larsen I, Li L, Pillitteri AG, Sønstebø E (2005) Comparison between controlled laboratory experiments and discrete particle simulations of the mechanical behaviour of rock. Int J Rock Mech Min Sci 42(7):985–995. doi:10.1016/j.ijrmms.2005.05.006

    Article  Google Scholar 

  • Huang H (1999) Discrete element modeling of tool-rock interaction. Ph.D Thesis. University of Minnesota, Minneapolis, MN

  • Imre B (2004) The particle flow code, PFC-2D, applied in planetary studies to model the tectonic evolution of chasma walls on Mars. In: 2nd international PFC symposium: numerical modeling in micromechanics via Particle methods, pp 199–206

  • Itasca (2008) PFC3D (Particle Flow Code in 3 Dimensions) manual Version 4.0. ICG, Minneapolis, Minnesota

  • Ivars DM, Pierce ME, Darcel C, Reyes-Montes J, Potyondy DO, Young RP, Cundall PA (2011) The synthetic rock mass approach for jointed rock mass modelling. Int J Rock Mech Min Sci 48(2):219–244. doi:10.1016/j.ijrmms.2010.11.014

    Article  Google Scholar 

  • Jiang M, Yu H-S, Harris D (2005) A novel discrete model for granular material incorporating rolling resistance. Comput Geotech 32(5):340–357. doi:10.1016/j.compgeo.2005.05.001

    Article  Google Scholar 

  • Jing L (2003) A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. Int J Rock Mech Min Sci 40(3):283–353. doi:10.1016/s1365-1609(03)00013-3

    Article  Google Scholar 

  • Jing L, Hudson J (2002) Numerical methods in rock mechanics. Int J Rock Mech Min Sci 39(4):409–427. doi:10.1016/S1365-1609(02)00065-5

    Article  Google Scholar 

  • Kaiser P, Kim B (2008) Rock mechanics advances of underground construction and mining. Keynote Lecture, Korea Rock Mecha, Symp, Seoul, 1–16

  • Kalker J, Johnson K (1993) Three-dimensional elastic bodies in rolling contact. J Appl Mech 60:255. doi:10.1115/1.2900773

    Article  Google Scholar 

  • Katsaga T, Potyondy D (2012) A generic stope model for investigation of fracturing mechanisms in deep gold mines. Paper presented at the 46th US rock mechanics/geomechanics symposium, Chicago, IIIinois, USA

  • Kazerani T, Zhao J (2010) Micromechanical parameters in bonded particle method for modelling of brittle material failure. Int J Numer Anal Meth Geomech 34(18):1877–1895. doi:10.1002/nag.884

    Article  Google Scholar 

  • Lee JS (2007) Time-dependent crack growth in brittle rocks and field applications to geologic hazards. Ph.D Thesis. University of Arizona, Arizona

  • Li X, Xiao T, Wang B et al (2012) Experimental study of Jinping II hydropower station marble under loading and unloading stress paths. Chin J Rock Mech Eng 31(5):882–889 (in Chinese)

    Google Scholar 

  • Lisjak A, Grasselli G (2014) A review of discrete modeling techniques for fracturing processes in discontinuous rock masses. J Rock Mech Geotech Eng 6(4):301–314. doi:10.1016/j.jrmge.2013.12.007

    Article  Google Scholar 

  • Lockner D, Byerlee J, Kuksenko V, Ponomarev A, Sidorin A (1992) Observations of quasistatic fault growth from acoustic emissions. Int Geophys 51:3–31. doi:10.1016/S0074-6142(08)62813-2

    Article  Google Scholar 

  • Mahboubi A, Ghaouti A, Cambou B (1996) La simulation numérique discrète du comportement des matériaux granulaires. Rev Fr Géotech 76:45–61

    Google Scholar 

  • Mahmutoglu Y (1998) Mechanical behaviour of cyclically heated fine grained rock. Rock Mech Rock Eng 31(3):169–179. doi:10.1007/s006030050017

    Article  Google Scholar 

  • Marinos P, Hoek E (2001) Estimating the geotechnical properties of heterogeneous rock masses such as flysch. Bull Eng Geol Environ 60(2):85–92. doi:10.1007/s100640000090

    Article  Google Scholar 

  • Martin CD (1993) The strength of massive Lac du Bonnet granite around underground openings. Ph.D Thesis. University of Manitoba (Canada), Canada

  • Martin C, Chandler N (1994) The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min Sci Geomech Abstr Pergamon 31(6):643–659. doi:10.1016/0148-9062(94)90005-1

    Article  Google Scholar 

  • Mogi K (2007) Experimental rock mechanics. Taylor & Francis Group, London

    Google Scholar 

  • Cho Na, Martin C, Sego D (2007) A clumped particle model for rock. Int J Rock Mech Min Sci 44(7):997–1010. doi:10.1016/j.ijrmms.2007.02.002

    Article  Google Scholar 

  • Oda M (1977) Co-ordination number and its relation to shear strength of granular material. Soils Foud Eng 17(2):29–42

    Article  Google Scholar 

  • Peng S, Johnson A (1972) Crack growth and faulting in cylindrical specimens of Chelmsford granite. Int J Rock Mech Min Sci Geomech Abstr Pergamon 9(1):37–86. doi:10.1016/0148-9062(72)90050-2

    Article  Google Scholar 

  • Pierce M, Cundall P, Potyondy D, Mas Ivars D (2007) A synthetic rock mass model for jointed rock. In: Rock mechanics: meeting society’s challenges and demands, 1st Canada-US rock mechanics symposium, Vancouver, 1:341–349

  • Plassiard J-P, Belheine N, Donzé F-V (2009) A spherical discrete element model: calibration procedure and incremental response. Granul Matter 11(5):293–306. doi:10.1007/s10035-009-0130-x

    Article  Google Scholar 

  • Potyondy D (2010) A grain-based model for rock: approaching the true microstructure. In: Proceedings of Bergmekanikk i Norden, pp 225–234

  • Potyondy D (2011) Parallel-bond refinements to match macroproperties of hard rock. In: Proceedings of the second international FLAC/DEM symposium, Melbourne, Itasca, pp 459–465

  • Potyondy D (2012) PFC2D flat-joint contact model. Itasca Consulting Group Inc, Minneapolis

    Google Scholar 

  • Potyondy D (2013) PFC3D flat joint contact model version 1. Itasca Consulting Group. Minneapolis, Technical Memorandum ICG7234-L

  • Potyondy DO (2015) The bonded-particle model as a tool for rock mechanics research and application: current trends and future directions. Geosyst Eng 18(1):1–28. doi:10.1080/12269328.2014.998346

    Article  Google Scholar 

  • Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364. doi:10.1016/j.ijrmms.2004.09.011

    Article  Google Scholar 

  • Scholtès L, Donzé F-V (2013) A DEM model for soft and hard rocks: role of grain interlocking on strength. J Mech Phys Solids 61(2):352–369. doi:10.1016/j.jmps.2012.10.005

    Article  Google Scholar 

  • Schöpfer MP, Abe S, Childs C, Walsh JJ (2009) The impact of porosity and crack density on the elasticity, strength and friction of cohesive granular materials: insights from DEM modelling. Int J Rock Mech Min Sci 46(2):250–261. doi:10.1016/j.ijrmms.2008.03.009

    Article  Google Scholar 

  • Shahinpoor M (1983) Advances in the mechanics and flow of granular materials, vol 1. Gulf Publishing Company, Houston

    Google Scholar 

  • Tan X, Konietzky H, Frühwirt T, Dan DQ (2014) Brazilian tests on transversely isotropic rocks: laboratory testing and numerical simulations. Rock Mech Rock Eng 48:1341–1351. doi:10.1007/s00603-014-0629-2

    Article  Google Scholar 

  • Tapponnier P, Brace W (1976) Development of stress-induced microcracks in Westerly granite. Int J Rock Mech Min Sci Geomech Abstr Pergamon 13(4):103–112. doi:10.1016/0148-9062(76)91937-9

    Article  Google Scholar 

  • Wang J (2013) Mechanical characteristics of deeply buried marble and its technical application. Ph.D Thesis, Kunming University of Science and Technology, Kunming, China

  • Wang Y, Mora P (2008) Modeling wing crack extension: implications for the ingredients of discrete element model. Pure Appl Geophys 165(3–4):609–620. doi:10.1007/s00024-008-0315-y

    Article  Google Scholar 

  • Wang Y, Tonon F (2009) Modeling Lac du Bonnet granite using a discrete element model. Int J Rock Mech Min Sci 46(7):1124–1135. doi:10.1016/j.ijrmms.2009.05.008

    Article  Google Scholar 

  • Wang C, Tannant D, Lilly P (2003) Numerical analysis of the stability of heavily jointed rock slopes using PFC2D. Int J Rock Mech Min Sci 40(3):415–424. doi:10.1016/S1365-1609(03)00004-2

    Article  Google Scholar 

  • Wawersik WR, Fairhurst C (1970) A study of brittle rock fracture in laboratory compression experiments. Int J Rock Mech Min Sci Geomech Abstr Pergamon 7(5):561–575. doi:10.1016/0148-9062(70)90007-0

    Article  Google Scholar 

  • Yang B, Jiao Y, Lei S (2006) A study on the effects of microparameters on macroproperties for specimens created by bonded particles. Eng Comput 23(6):607–631. doi:10.1108/02644400610680333

    Article  Google Scholar 

  • Yang Y, Chang X-L, Zhou W, Zhou C-B (2012) Simulation of hydraulic fracturing of fractured rock mass by PFC (2D). J Sichuan Univ Eng Sci Ed 44(5):78–85

    Google Scholar 

  • Yoon J (2007) Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int J Rock Mech Min Sci 44(6):871–889. doi:10.1016/j.ijrmms.2007.01.004

    Article  Google Scholar 

  • Zhang Q, Zhu H, Zhang L, Ding X (2012) Effect of micro-parameters on the Hoek–Brown strength parameter mi for intact rock using particle flow modeling. In: The 46th US rock mechanics geomechanics symposium, ARMA-12-672

  • Zhang Q, Zhu HH, Zhang L (2015) Studying the effect of non-spherical micro-particles on Hoek-Brown strength parameter mi using numerical true triaxial compressive tests. Int J Numer Anal Meth Geomech 39(1):96–114. doi:10.1002/nag.2310

    Article  Google Scholar 

  • Zhina L, Linfang M, Weidong S (2008) Study on stope structure parameter optimization of sublevel caving without sill pillar based on numeral simulation with PFC. Min Res Dev 1:003

    Google Scholar 

  • Zhou H, Yang Y, Xiao H et al (2013) Research on loading rate effect of tensile strength property of hard brittle marble-test characteristics and mechanism. Chin J Rock Mech Eng 32(9):1868–1875 (in Chinese)

    Google Scholar 

  • Zyranov DV, Korsues RK (2002) A numerical model for simulation of the sea ice destruction due to external stress in gegoscale areas. In: Konietzky H (ed) Numerical modeling in micromechanics via particle methods. Taylor & Francis, London, pp 29–35

Download references

Acknowledgments

The support received from Key Program of Natural Science Foundation of China (51074014, 51174014) and Beijing Training Project for the Leading Talent in S & T (Z151100000315014), is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueliang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Xu, X. A Study of Three Intrinsic Problems of the Classic Discrete Element Method Using Flat-Joint Model. Rock Mech Rock Eng 49, 1813–1830 (2016). https://doi.org/10.1007/s00603-015-0890-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-015-0890-z

Keywords

Navigation