Skip to main content
Log in

Computational study of laser fragmentation in liquid: Phase explosion, inverse Leidenfrost effect at the nanoscale, and evaporation in a nanobubble

  • Article
  • Special Topic: Advances in Pulsed Laser Synthesis of Nanoparticles in Liquids
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Laser fragmentation in liquid is an effective and environment-friendly processing technique capable of yielding colloidal nanoparticles and atomic clusters with a narrow size distribution. The advancement of this technique can be facilitated by an improved understanding of processes that control the sizes, shapes, and structures of the produced nanoparticles. In this work, the dependence of the fragmentation mechanisms on the energy density deposited by the laser pulse is investigated in atomistic simulations performed for 20 nm Au nanoparticles irradiated in water by 10 ps laser pulses. The simulations reveal that the decrease in the absorbed laser energy leads to sequential transitions from the regime of “strong” phase explosion, when all products of an explosive phase decomposition of the irradiated nanoparticle are promptly injected into the water surrounding a nanobubble formed around the nanoparticle, to two distinct regimes of nanoparticle fragmentation leading to the formation of a large central nanoparticle surrounded by smaller satellite fragments. First, in the regime of “mild” phase explosion, the central nanoparticle is produced by the reflection of some of the hot metal droplets generated by the explosive decomposition of the nanoparticle from the boundary of the nanobubble. This reflection is attributed to the inverse Leidenfrost effect acting at the nanoscale. The reflected droplets converge in the center of the nanobubble and coalesce into a single droplet that solidifies shortly after the collapse of the nanobubble. Further decrease in the absorbed laser energy brings the irradiation conditions below the threshold for the phase explosion and results in the formation of a core-satellite structure of the fragmentation products through an interplay of the intense evaporation from the surface of the irradiated nanoparticle, evolution of the nanobubble, and condensation of the metal vapor into clusters and small satellite nanoparticles. The computational predictions are related to the experimental observations, and the connections between the fragmentation mechanisms, the nanoparticle size distribution, and the generation of internal crystal defects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Handbook of Nanomaterials for Industrial Applications, edited by C. M. Hussain (Elsevier, Amsterdam, 2020).

    Google Scholar 

  2. M.-C. Daniel, and D. Astruc, Chem. Rev. 104, 293 (2004).

    Article  Google Scholar 

  3. S. Jendrzej, B. Gökce, M. Epple, and S. Barcikowski, ChemPhysChem 18, 1012 (2017).

    Article  Google Scholar 

  4. L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, Small 7, 169 (2011).

    Article  Google Scholar 

  5. D. Kim, K. Shin, S. G. Kwon, and T. Hyeon, Adv. Mater. 30, 1802309 (2018).

    Article  Google Scholar 

  6. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, J. Phys. Chem. B 110, 7238 (2006).

    Article  Google Scholar 

  7. Special Issue on Nanoparticles in Catalysis, Chem. Rev. 120, 461 (2020).

  8. R. C. Forsythe, C. P. Cox, M. K. Wilsey, and A. M. Müller, Chem. Rev. 121, 7568 (2021).

    Article  Google Scholar 

  9. Z. Li, J.-Y. Fu, Y. Feng, C.-K. Dong, H. Liu, and X.-W. Du, Nat. Catal. 2, 1107 (2019).

    Article  Google Scholar 

  10. A. Takami, H. Kurita, and S. Koda, J. Phys. Chem. B 103, 1226 (1999).

    Article  Google Scholar 

  11. F. Mafuné, J.-y. Kohno, Y. Takeda, and T. Kondow, J. Phys. Chem. B 106, 8555 (2002).

    Article  Google Scholar 

  12. S. Inasawa, M. Sugiyama, and Y. Yamaguchi, J. Phys. Chem. B 109, 9404 (2005).

    Article  Google Scholar 

  13. V. Amendola, and M. Meneghetti, J. Mater. Chem. 17, 4705 (2007).

    Article  Google Scholar 

  14. S. Hashimoto, D. Werner, and T. Uwada, J. Photochem. Photobiol. C-Photochem. Rev. 13, 28 (2012).

    Article  Google Scholar 

  15. D. Werner, and S. Hashimoto, Langmuir 29, 1295 (2013).

    Article  Google Scholar 

  16. A. R. Ziefuß, S. Reichenberger, C. Rehbock, I. Chakraborty, M. Gharib, W. J. Parak, and S. Barcikowski, J. Phys. Chem. C 122, 22125 (2018).

    Article  Google Scholar 

  17. A. R. Ziefuss, S. Reich, S. Reichenberger, M. Levantino, and A. Plech, Phys. Chem. Chem. Phys. 22, 4993 (2020).

    Article  Google Scholar 

  18. O. Havelka, M. Cvek, M. Urbánek, D. Łukowiec, D. Jašíková, M. Kotek, M. Černík, V. Amendola, and R. Torres-Mendieta, Nanomaterials 11, 1538 (2021).

    Article  Google Scholar 

  19. D. Zhang, B. Gökce, and S. Barcikowski, Chem. Rev. 117, 3990 (2017).

    Article  Google Scholar 

  20. A. Kanitz, M.-R. Kalus, E. L. Gurevich, A. Ostendorf, S. Barcikowski, and D. Amans, Plasma Sources Sci. Technol. 28, 103001 (2019).

    Article  ADS  Google Scholar 

  21. V. Amendola, D. Amans, Y. Ishikawa, N. Koshizaki, S. Scirè, G. Compagnini, S. Reichenberger, and S. Barcikowski, Chem. Eur. J. 26, 9206 (2020).

    Article  Google Scholar 

  22. A. V. Kabashin, and M. Meunier, J. Appl. Phys. 94, 7941 (2003).

    Article  ADS  Google Scholar 

  23. G. Marzun, J. Nakamura, X. Zhang, S. Barcikowski, and P. Wagener, Appl. Surf. Sci. 348, 75 (2015).

    Article  Google Scholar 

  24. C. Y. Shih, R. Streubel, J. Heberle, A. Letzel, M. V. Shugaev, C. Wu, M. Schmidt, B. Gökce, S. Barcikowski, and L. V. Zhigilei, Nanoscale 10, 6900 (2018).

    Article  Google Scholar 

  25. A. R. Ziefuss, T. Steenbock, D. Benner, A. Plech, J. Göttlicher, M. Teubner, B. Grimm-Lebsanft, C. Rehbock, C. Comby-Zerbino, R. Antoine, D. Amans, I. Chakraborty, G. Bester, M. Nachev, B. Sures, M. Rübhausen, W. J. Parak, and S. Barcikowski, Adv. Mater. 33, 2101549 (2021).

    Article  Google Scholar 

  26. M. Zhou, C. Zeng, Y. Chen, S. Zhao, M. Y. Sfeir, M. Zhu, and R. Jin, Nat. Commun. 7, 13240 (2016).

    Article  ADS  Google Scholar 

  27. M. Turner, V. B. Golovko, O. P. H. Vaughan, P. Abdulkin, A. Berenguer-Murcia, M. S. Tikhov, B. F. G. Johnson, and R. M. Lambert, Nature 454, 981 (2008).

    Article  ADS  Google Scholar 

  28. A. Siems, S. A. L. Weber, J. Boneberg, and A. Plech, New J. Phys. 13, 043018 (2011).

    Article  ADS  Google Scholar 

  29. A. Plech, S. Ibrahimkutty, S. Reich, and G. Newby, Nanoscale 9, 17284 (2017).

    Article  Google Scholar 

  30. D. Werner, A. Furube, T. Okamoto, and S. Hashimoto, J. Phys. Chem. C 115, 8503 (2011).

    Article  Google Scholar 

  31. D. Lapotko, Opt. Express 17, 2538 (2009).

    Article  ADS  Google Scholar 

  32. A. N. Volkov, C. Sevilla, and L. V. Zhigilei, Appl. Surf. Sci. 253, 6394 (2007).

    Article  ADS  Google Scholar 

  33. É. Boulais, R. Lachaine, and M. Meunier, Nano Lett. 12, 4763 (2012).

    Article  ADS  Google Scholar 

  34. J. Lombard, T. Biben, and S. Merabia, J. Phys. Chem. C 121, 15402 (2017).

    Article  Google Scholar 

  35. J. Lombard, J. Lam, F. Detcheverry, T. Biben, and S. Merabia, Phys. Rev. Res. 3, 023231 (2021), arXiv: 2105.05022.

    Article  Google Scholar 

  36. S. Merabia, P. Keblinski, L. Joly, L. J. Lewis, and J.-L. Barrat, Phys. Rev. E 79, 021404 (2009), arXiv: 0808.3160.

    Article  ADS  Google Scholar 

  37. S. Merabia, S. Shenogin, L. Joly, P. Keblinski, and J.-L. Barrat, Proc. Natl. Acad. Sci. USA 106, 15113 (2009), arXiv: 0906.0438.

    Article  ADS  Google Scholar 

  38. K. Sasikumar, and P. Keblinski, J. Chem. Phys. 141, 234508 (2014).

    Article  ADS  Google Scholar 

  39. H. Huang, and L. V. Zhigilei, J. Phys. Chem. C 125, 13413 (2021).

    Article  Google Scholar 

  40. D. S. Ivanov, and L. V. Zhigilei, Phys. Rev. B 68, 064114 (2003).

    Article  ADS  Google Scholar 

  41. C. Wu, and L. V. Zhigilei, Appl. Phys. A 114, 11 (2014).

    Article  ADS  Google Scholar 

  42. M. Tabetah, A. Matei, C. Constantinescu, N. P. Mortensen, M. Dinescu, J. Schou, and L. V. Zhigilei, J. Phys. Chem. B 118, 13290 (2014).

    Article  Google Scholar 

  43. J. Zou, C. Wu, W. D. Robertson, L. V. Zhigilei, and R. J. D. Miller, J. Chem. Phys. 145, 204202 (2016).

    Article  ADS  Google Scholar 

  44. C.-Y. Shih, C. Wu, M. V. Shugaev, and L. V. Zhigilei, J. Colloid Interface Sci. 489, 3 (2017).

    Article  ADS  Google Scholar 

  45. C.-Y. Shih, M. V. Shugaev, C. Wu, and L. V. Zhigilei, J. Phys. Chem. C 121, 16549 (2017).

    Article  Google Scholar 

  46. C. Schäfer, H. M. Urbassek, L. V. Zhigilei, and B. J. Garrison, Comput. Mater. Sci. 24, 421 (2002).

    Article  Google Scholar 

  47. E. T. Karim, M. Shugaev, C. Wu, Z. Lin, R. F. Hainsey, and L. V. Zhigilei, J. Appl. Phys. 115, 183501 (2014).

    Article  ADS  Google Scholar 

  48. V. V. Zhakhovskii, N. A. Inogamov, Y. V. Petrov, S. I. Ashitkov, and K. Nishihara, Appl. Surf. Sci. 255, 9592 (2009).

    Article  ADS  Google Scholar 

  49. J. Hohlfeld, S. S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, Chem. Phys. 251, 237 (2000).

    Article  Google Scholar 

  50. J. W. Arblaster, J. Phase Equilibria Diffus. 37, 229 (2016).

    Article  Google Scholar 

  51. L. V. Zhigilei, and B. J. Garrison, Appl. Surf. Sci. 127–129, 142 (1998).

    Article  ADS  Google Scholar 

  52. R. Fahdiran, and H. M. Urbassek, Eur. Phys. J. D 69, 35 (2015).

    Article  ADS  Google Scholar 

  53. L. Delfour, and T. E. Itina, J. Phys. Chem. C 119, 13893 (2015).

    Article  Google Scholar 

  54. V. P. Skripov, Metastable Liquids (Wiley, New York, 1974).

    Google Scholar 

  55. A. Miotello, and R. Kelly, Appl. Phys. A 69, S67 (1999).

    Article  ADS  Google Scholar 

  56. B. J. Garrison, T. E. Itina, and L. V. Zhigilei, Phys. Rev. E 68, 041501 (2003).

    Article  ADS  Google Scholar 

  57. A. Vogel, S. Busch, and U. Parlitz, J. Acoust. Soc. Am. 100, 148 (1996).

    Article  ADS  Google Scholar 

  58. A. G. Doukas, and T. J. Flotte, Ultrasound Med. Biol. 22, 151 (1996).

    Article  Google Scholar 

  59. E. Leveugle, A. Sellinger, J. M. Fitz-Gerald, and L. V. Zhigilei, Phys. Rev. Lett. 98, 216101 (2007).

    Article  ADS  Google Scholar 

  60. R. S. Hall, S. J. Board, A. J. Clare, R. B. Duffey, T. S. Playle, and D. H. Poole, Nature 224, 266 (1969).

    Article  ADS  Google Scholar 

  61. D. Zhang, J. Liu, P. Li, Z. Tian, and C. Liang, ChemNanoMat 3, 512 (2017).

    Article  Google Scholar 

  62. J.-Y. Lin, C. Xi, Z. Li, Y. Feng, D.-Y. Wu, C.-K. Dong, P. Yao, H. Liu, and X.-W. Du, Chem. Commun. 55, 3121 (2019).

    Article  Google Scholar 

  63. S. Reichenberger, G. Marzun, M. Muhler, and S. Barcikowski, ChemCatChem 11, 4489 (2019).

    Article  Google Scholar 

  64. S. Dittrich, S. Kohsakowski, B. Wittek, C. Hengst, B. Gökce, S. Barcikowski, and S. Reichenberger, Nanomaterials 10, 1582 (2020).

    Article  Google Scholar 

  65. W. Huang, A. C. Johnston-Peck, T. Wolter, W. C. D. Yang, L. Xu, J. Oh, B. A. Reeves, C. Zhou, M. E. Holtz, A. A. Herzing, A. M. Lindenberg, M. Mavrikakis, and M. Cargnello, Science 373, 1518 (2021).

    Article  ADS  Google Scholar 

  66. S. Reichenberger, Sci. China-Phys. Mech. Astron. 65, 274208 (2022).

    Article  ADS  Google Scholar 

  67. J.-P. Sylvestre, S. Poulin, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, J. Phys. Chem. B 108, 16864 (2004).

    Article  Google Scholar 

  68. A. Letzel, S. Reich, T. dos Santos Rolo, A. Kanitz, J. Hoppius, A. Rack, M. P. Olbinado, A. Ostendorf, B. Gökce, A. Plech, and S. Barcikowski, Langmuir 35, 3038 (2019).

    Article  Google Scholar 

  69. A. R. Ziefuß, S. Barcikowski, and C. Rehbock, Langmuir 35, 6630 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid V. Zhigilei.

Additional information

This work was supported by the National Science Foundation (NSF) (Grant Nos. DMR-1708486, and CMMI-1663429). Leonid V. Zhigilei also acknowledges the Mercator Fellowship at the University of Duisburg-Essen, Germany, funded by Deutsche Forschungsgemeinschaft (Grant No. BA 3580/22-1), and the Research Award of the Alexander von Humboldt Foundation. Computational support was provided by the NSF through the Extreme Science and Engineering Discovery Environment (Grant No. TGDMR110090).

Supporting Information

The supporting information is available online at phys.scichina.com and link.springer.com. It includes an animated sequence of density profiles from the simulation of LFL performed at a deposited energy density of 2.7 eV/atom and illustrated in Figure 5. The animation is provided in the animated GIF format. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Zhigilei, L.V. Computational study of laser fragmentation in liquid: Phase explosion, inverse Leidenfrost effect at the nanoscale, and evaporation in a nanobubble. Sci. China Phys. Mech. Astron. 65, 274206 (2022). https://doi.org/10.1007/s11433-021-1881-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1881-8

PACS number(s)

Navigation