Skip to main content
Log in

Memristive oscillator to memristive map, energy characteristic

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Most of nonlinear oscillators composed of capacitive and inductive variables can obtain the Hamilton energy by using the Helmholtz theorem when the models are rewritten in equivalent vector forms. The energy functions for biophysical neurons can be obtained by applying scale transformation on the physical field energy in their equivalent neural circuits. Realistic dynamical systems often have exact energy functions, while some mathematical models just suggest generic Lyapunov functions, and the energy function is effective to predict mode transition. In this paper, a memristive oscillator is approached by two kinds of memristor-based nonlinear circuits, and the energy functions are defined to predict the dependence of oscillatory modes on energy level. In absence of capacitive variable for capacitor, the physical timet and chargeq are converted into dimensionless variables by using combination of resistance and inductance (L,R), e.g.,τ=t×R/L. Discrete energy function for each memristive map is proposed by applying the similar weights as energy function for the memristive oscillator. For example, energy function for the map is obtained by replacing the variables and parameters of the memristive oscillator with corresponding variables and parameters for the memristive map. The memristive map prefers to keep lower average energy than the memristive oscillator, and chaos is generated in a discrete system with two variables. The scheme is helpful for energy definition in maps, and it provides possible guidance for verifying the reliability of maps by considering the energy characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heinrich M, Dahms T, Flunkert V, et al. Symmetry-breaking transitions in networks of nonlinear circuit elements. New J Phys, 2010, 12: 113030

    Article  Google Scholar 

  2. Kenkel S W, Straley J P. Percolation theory of nonlinear circuit elements. Phys Rev Lett, 1982, 49: 767–770

    Article  MathSciNet  Google Scholar 

  3. Sivaganesh G, Srinivasan K, Arulgnanam A. Analytical studies on the dynamics of higher-dimensional nonlinear circuit systems. Pramana, 2022, 96: 185

    Article  Google Scholar 

  4. Ardila V, Ramirez F, Suarez A. Analytical and numerical bifurcation analysis of circuits based on nonlinear resonators. IEEE Trans Microwave Theor Techn, 2021, 69: 4392–4405

    Article  Google Scholar 

  5. Gao X, Mou J, Xiong L, et al. A fast and efficient multiple images encryption based on single-channel encryption and chaotic system. Nonlinear Dyn, 2022, 108: 613–636

    Article  Google Scholar 

  6. Xin J, Hu H, Zheng J. 3D variable-structure chaotic system and its application in color image encryption with new Rubik’s Cube-like permutation. Nonlinear Dyn, 2023, 111: 7859–7882

    Article  Google Scholar 

  7. Ning X, Dong Q, Zhou S, et al. Construction of new 5D Hamiltonian conservative hyperchaotic system and its application in image encryption. Nonlinear Dyn, 2023, 111: 20425–20446

    Article  Google Scholar 

  8. Liu X, Tong X, Wang Z, et al. Construction of controlled multi-scroll conservative chaotic system and its application in color image encryption. Nonlinear Dyn, 2022, 110: 1897–1934

    Article  Google Scholar 

  9. Wang R, Wang Y, Xu X, et al. Brain works principle followed by neural information processing: A review of novel brain theory. Artif Intell Rev, 2023, 56: 285–350

    Article  Google Scholar 

  10. Quaranta G, Lacarbonara W, Masri S F. A review on computational intelligence for identification of nonlinear dynamical systems. Nonlinear Dyn, 2020, 99: 1709–1761

    Article  Google Scholar 

  11. Groschner L N, Malis J G, Zuidinga B, et al. A biophysical account of multiplication by a single neuron. Nature, 2022, 603: 119–123

    Article  Google Scholar 

  12. Tagluk M E, Isik I. Communication in nano devices: Electronic based biophysical model of a neuron. Nano Commun Netw, 2019, 19: 134–147

    Article  Google Scholar 

  13. Wu F Q, Ma J, Zhang G. Energy estimation and coupling synchronization between biophysical neurons. Sci China Tech Sci, 2020, 63: 625–636

    Article  Google Scholar 

  14. Clark R, Fuller L, Platt J A, et al. Reduced-dimension, biophysical neuron models constructed from observed data. Neural Comput, 2022, 34: 1545–1587

    Article  MathSciNet  Google Scholar 

  15. Sotero R C, Trujillo-Barreto N J. Biophysical model for integrating neuronal activity, EEG, fMRI and metabolism. NeuroImage, 2008, 39: 290–309

    Article  Google Scholar 

  16. Ma J. Biophysical neurons, energy, and synapse controllability: A review. J Zhejiang Univ Sci A, 2023, 24: 109–129

    Article  Google Scholar 

  17. Wu F Q, Guo Y T, Ma J. Energy flow accounts for the adaptive property of functional synapses. Sci China Tech Sci, 2023, 66: 3139–3152

    Article  Google Scholar 

  18. Yang F, Xu Y, Ma J. A memristive neuron and its adaptability to external electric field. Chaos-An Interdisciplinary J NOnlinear Sci, 2023, 33: 023110

    Article  MathSciNet  Google Scholar 

  19. Xie Y, Yao Z, Ma J. Formation of local heterogeneity under energy collection in neural networks. Sci China Tech Sci, 2023, 66: 439–455

    Article  Google Scholar 

  20. Yang F, Wang Y, Ma J. Creation of heterogeneity or defects in a memristive neural network under energy flow. Commun NOnlinear Sci Numer Simul, 2023, 119: 107127

    Article  Google Scholar 

  21. Real E, Asari H, Gollisch T, et al. Neural circuit inference from function to structure. Curr Biol, 2017, 27: 189–198

    Article  Google Scholar 

  22. Pan Y, Monje M. Activity shapes neural circuit form and function: A historical perspective. J Neurosci, 2020, 40: 944–954

    Article  Google Scholar 

  23. Davis F P, Nern A, Picard S, et al. A genetic, genomic, and computational resource for exploring neural circuit function. eLife, 2020, 9: e50901

    Article  Google Scholar 

  24. Sussillo D. Neural circuits as computational dynamical systems. Curr Opin Neurobiol, 2014, 25: 156–163

    Article  Google Scholar 

  25. Wu F, Yao Z. Dynamics of neuron-like excitable Josephson junctions coupled by a metal oxide memristive synapse. Nonlinear Dyn, 2023, 111: 13481–13497

    Article  Google Scholar 

  26. Xie Y, Yao Z, Hu X, et al. Enhance sensitivity to illumination and synchronization in light-dependent neurons. Chin Phys B, 2021, 30: 120510

    Article  Google Scholar 

  27. Zhou P, Yao Z, Ma J, et al. A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus. Chaos Solitons Fractals, 2021, 145: 110751

    Article  MathSciNet  Google Scholar 

  28. Xu Y, Liu M, Zhu Z, et al. Dynamics and coherence resonance in a thermosensitive neuron driven by photocurrent. Chin Phys B, 2020, 29: 098704

    Article  Google Scholar 

  29. Tagne J F, Edima H C, Njitacke Z T, et al. Bifurcations analysis and experimental study of the dynamics of a thermosensitive neuron conducted simultaneously by photocurrent and thermistance. Eur Phys J Spec Top, 2022, 231: 993–1004

    Article  Google Scholar 

  30. Zhu Z, Ren G, Zhang X, et al. Effects of multiplicative-noise and coupling on synchronization in thermosensitive neural circuits. Chaos Solitons Fractals, 2021, 151: 111203

    Article  MathSciNet  Google Scholar 

  31. Shen H, Yu F, Wang C, et al. Firing mechanism based on single memristive neuron and double memristive coupled neurons. Nonlinear Dyn, 2022, 110: 3807–3822

    Article  Google Scholar 

  32. Wu F, Hu X, Ma J. Estimation of the effect of magnetic field on a memristive neuron. Appl Math Comput, 2022, 432: 127366

    MathSciNet  Google Scholar 

  33. Wen Z, Wang C, Deng Q, et al. Regulating memristive neuronal dynamical properties via excitatory or inhibitory magnetic field coupling. Nonlinear Dyn, 2022, 110: 3823–3835

    Article  Google Scholar 

  34. Xu Q, Ju Z, Ding S, et al. Electromagnetic induction effects on electrical activity within a memristive Wilson neuron model. Cogn Neurodyn, 2022, 16: 1221–1231

    Article  Google Scholar 

  35. Kafraj M S, Parastesh F, Jafari S. Firing patterns of an improved Izhikevich neuron model under the effect of electromagnetic induction and noise. Chaos Solitons Fractals, 2020, 137: 109782

    Article  MathSciNet  Google Scholar 

  36. Narayanan R, Johnston D. Functional maps within a single neuron. J Neurophysiol, 2012, 108: 2343–2351

    Article  Google Scholar 

  37. Ibarz B, Casado J M, Sanjuan M A F. Map-based models in neuronal dynamics. Phys Rep, 2011, 501: 1–74

    Article  Google Scholar 

  38. Muni S S, Fatoyinbo H O, Ghosh I. Dynamical effects of electromagnetic flux on chialvo neuron map: Nodal and network behaviors. Int J Bifurcation Chaos, 2022, 32: 2230020

    Article  MathSciNet  Google Scholar 

  39. Ramakrishnan B, Mehrabbeik M, Parastesh F, et al. A new memristive neuron map model and its network’s dynamics under electrochemical coupling. Electronics, 2022, 11: 153

    Article  Google Scholar 

  40. Bao H, Li K X, Ma J, et al. Memristive effects on an improved discrete Rulkov neuron model. Sci China Tech Sci, 2023, 66: 3153–3163

    Article  Google Scholar 

  41. Li Y, Wang Z, Midya R, et al. Review of memristor devices in neuromorphic computing: Materials sciences and device challenges. J Phys D-Appl Phys, 2018, 51: 503002

    Article  Google Scholar 

  42. Khalid M. Review on various memristor models, characteristics, potential applications, and future works. Trans Electr Electron Mater, 2019, 20: 289–298

    Article  Google Scholar 

  43. Thakkar P, Gosai J, Gogoi H J, et al. From fundamentals to frontiers: A review of memristor mechanisms, modeling and emerging applications. J Mater Chem C, 2024, 12: 1583–1608

    Article  Google Scholar 

  44. Lin H, Wang C, Deng Q, et al. Review on chaotic dynamics of memristive neuron and neural network. Nonlinear Dyn, 2021, 106: 959–973

    Article  Google Scholar 

  45. Lai Q, Lai C. Design and implementation of a new hyperchaotic memristive map. IEEE Trans Circuits Syst II, 2022, 69: 2331–2335

    Google Scholar 

  46. Liu X, Sun K, Wang H, et al. A class of novel discrete memristive chaotic map. Chaos Solitons Fractals, 2023, 174: 113791

    Article  MathSciNet  Google Scholar 

  47. Ramadoss J, Almatroud O A, Momani S, et al. Discrete memristance and nonlinear term for designing memristive maps. Symmetry, 2022, 14: 2110

    Article  Google Scholar 

  48. Rong K, Bao H, Li H, et al. Memristive Hénon map with hidden Neimark–Sacker bifurcations. Nonlinear Dyn, 2022, 108: 4459–4470

    Article  Google Scholar 

  49. Bao B, Zhao Q, Yu X, et al. Complex dynamics and initial state effects in a two-dimensional sine-bounded memristive map. Chaos Solitons Fractals, 2023, 173: 113748

    Article  MathSciNet  Google Scholar 

  50. Fox R F, Gatland I R, Roy R, et al. Fast, accurate algorithm for numerical simulation of exponentially correlated colored noise. Phys Rev A, 1988, 38: 5938–5940

    Article  Google Scholar 

  51. Li X, Xu Y. Energy level transition and mode transition in a neuron. Nonlinear Dyn, 2024, 112: 2253–2263

    Article  Google Scholar 

  52. Mantegna R N. Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes. Phys Rev E, 1994, 49: 4677–4683

    Article  Google Scholar 

  53. Guo Y, Xie Y, Ma J. How to define energy function for memristive oscillator and map. Nonlinear Dyn, 2023, 111: 21903–21915

    Article  Google Scholar 

  54. Ma J. Energy function for some maps and nonlinear oscillators. Appl Math Comput, 2024, 463: 128379

    MathSciNet  Google Scholar 

  55. Isah A, Bilbault J M. Review on the basic circuit elements and memristor interpretation: Analysis, technology and applications. J Low Power Electron Appl, 2022, 12: 44

    Article  Google Scholar 

  56. Abraham I. The case for rejecting the memristor as a fundamental circuit element. Sci Rep, 2018, 8: 10972

    Article  Google Scholar 

  57. Ramakrishnan B, Durdu A, Rajagopal K, et al. Infinite attractors in a chaotic circuit with exponential memristor and Josephson junction resonator. AEU-Int J Electron Commun, 2020, 123: 153319

    Article  Google Scholar 

  58. Isah A, Nguetcho AST, Binczak S, et al. Dynamics of a charge-controlled memristor in master–slave coupling. Electron Lett, 2020, 56: 211–213

    Article  Google Scholar 

  59. Sun J, Yang J, Liu P, et al. Design of general flux-controlled and charge-controlled memristor emulators based on hyperbolic functions. IEEE Trans Comput-Aided Des Integr Circuits Syst, 2022, 42: 956–967

    Article  Google Scholar 

  60. Sharma P K, Ranjan R K, Khateb F, et al. Charged controlled mem-element emulator and its application in a chaotic system. IEEE Access, 2020, 8: 171397–171407

    Article  Google Scholar 

  61. Wang C, Tang J, Ma J. Minireview on signal exchange between nonlinear circuits and neurons via field coupling. Eur Phys J Spec Top, 2019, 228: 1907–1924

    Article  Google Scholar 

  62. Wang X, Yu D, Wu Y, et al. Effects of potassium channel blockage on inverse stochastic resonance in Hodgkin-Huxley neural systems. J Zhejiang Univ Sci A, 2023, 24: 735–748

    Article  Google Scholar 

  63. Huang W, Yang L, Zhan X, et al. Synchronization transition of a modular neural network containing subnetworks of different scales. Front Inform Technol Electron Eng, 2023, 24: 1458–1470

    Article  Google Scholar 

  64. Xie Y, Yao Z, Ma J. Phase synchronization and energy balance between neurons. Front Inform Technol Electron Eng, 2022, 23: 1407–1420

    Article  Google Scholar 

  65. Wu F, Gu H, Jia Y. Bifurcations underlying different excitability transitions modulated by excitatory and inhibitory memristor and chemical autapses. Chaos Solitons Fractals, 2021, 153: 111611

    Article  MathSciNet  Google Scholar 

  66. Majhi S, Perc M, Ghosh D. Dynamics on higher-order networks: A review. J R Soc Interface, 2022, 19: 20220043

    Article  Google Scholar 

  67. Li X, Ghosh D, Lei Y. Chimera states in coupled pendulum with higher-order interaction. Chaos Solitons Fractals, 2023, 170: 113325

    Article  MathSciNet  Google Scholar 

  68. Parastesh F, Mehrabbeik M, Rajagopal K, et al. Synchronization in Hindmarsh-Rose neurons subject to higher-order interactions. Chaos-An Interdiscipl J Nonlinear Sci, 2022, 32: 013125

    Article  MathSciNet  Google Scholar 

  69. Ramasamy M, Devarajan S, Kumarasamy S, et al. Effect of higher-order interactions on synchronization of neuron models with electromagnetic induction. Appl Math Comput, 2022, 434: 127447

    MathSciNet  Google Scholar 

  70. Kundu S, Ghosh D. Higher-order interactions promote chimera states. Phys Rev E, 2022, 105: L042202

    Article  MathSciNet  Google Scholar 

  71. Atay F M, Jost J, Wende A. Delays, connection topology, and synchronization of coupled chaotic maps. Phys Rev Lett, 2004, 92: 144101

    Article  Google Scholar 

  72. Koronovskii A A, Moskalenko O I, Shurygina S A, et al. Generalized synchronization in discrete maps. New point of view on weak and strong synchronization. Chaos Solitons Fractals, 2013, 46: 12–18

    Article  MathSciNet  Google Scholar 

  73. Winkler M, Sawicki J, Omelchenko I, et al. Relay synchronization in multiplex networks of discrete maps. Europhys Lett, 2019, 126: 50004

    Article  Google Scholar 

  74. Muni S S, Rajagopal K, Karthikeyan A, et al. Discrete hybrid Izhikevich neuron model: Nodal and network behaviours considering electromagnetic flux coupling. Chaos Solitons Fractals, 2022, 155: 111759

    Article  Google Scholar 

  75. Ma M, Yang Y, Qiu Z, et al. A locally active discrete memristor model and its application in a hyperchaotic map. Nonlinear Dyn, 2022, 107: 2935–2949

    Article  Google Scholar 

  76. Peng Y, He S, Sun K. A higher dimensional chaotic map with discrete memristor. AEU-Int J Electron Commun, 2021, 129: 153539

    Article  Google Scholar 

  77. Zhong H, Li G, Xu X. A generic voltage-controlled discrete memristor model and its application in chaotic map. Chaos Solitons Fractals, 2022, 161: 112389

    Article  MathSciNet  Google Scholar 

  78. Ren L, Mou J, Banerjee S, et al. A hyperchaotic map with a new discrete memristor model: Design, dynamical analysis, implementation and application. Chaos Solitons Fractals, 2023, 167: 113024

    Article  MathSciNet  Google Scholar 

  79. Bao H, Hua Z Y, Liu W B, et al. Discrete memristive neuron model and its interspike interval-encoded application in image encryption. Sci China Tech Sci, 2021, 64: 2281–2291

    Article  Google Scholar 

  80. Li C, Yang Y, Yang X, et al. Application of discrete memristors in logistic map and Hindmarsh-Rose neuron. Eur Phys J Spec Top, 2022, 231: 3209–3224

    Article  Google Scholar 

  81. Bao H, Chen Z G, Cai J M, et al. Memristive cyclic three-neuron-based neural network with chaos and global coexisting attractors. Sci China Tech Sci, 2022, 65: 2582–2592

    Article  Google Scholar 

  82. Lu L L, Yi M, Liu X Q. Energy-efficient firing modes of chay neuron model in different bursting kinetics. Sci China Tech Sci, 2022, 65: 1661–1674

    Article  Google Scholar 

  83. Yuan Y Y, Yang H, Han F, et al. Traveling chimera states in locally coupled memristive Hindmarsh-Rose neuronal networks and circuit simulation. Sci China Tech Sci, 2022, 65: 1445–1455

    Article  Google Scholar 

  84. Yu Y, Fan Y B, Han F, et al. Transcranial direct current stimulation inhibits epileptic activity propagation in a large-scale brain network model. Sci China Tech Sci, 2023, 66: 3628–3638

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ma.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 12072139).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Ma, J., Zhang, X. et al. Memristive oscillator to memristive map, energy characteristic. Sci. China Technol. Sci. 67, 1567–1578 (2024). https://doi.org/10.1007/s11431-023-2637-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-023-2637-1

Navigation