Skip to main content
Log in

Formation of local heterogeneity under energy collection in neural networks

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Static distribution of intracellular and extracellular ions can induce the spatial distribution of electric field in the cell, while stochastic diffusion and propagation of ions can generate channel current accompanied by the magnetic field. In fact, the field energy (including magnetic and electric fields) in each cell or neuron can be changed under external stimuli or the deformation of shape. Furthermore, energy pumping occurs, and the synaptic connection is created adaptively to keep energy balance when more neurons are clustered in the same region because of electromagnetic field superposition. For a synchronous and homogeneous network, all neurons keep energy balance with the adjacent neurons, and the network becomes uniform and identical. For cardiac tissue and biological media, local heterogeneity such as sinoatrial node can emit continuous wave front, and target waves are propagated to regulate the neural activities and heartbeat rhythm. In this paper, the Hamilton energy in a simple neuron model is calculated according to the Helmholtz theorem, and more neurons are clustered to build a regular network (chain network and square array). The creation and growth of synapse connection are controlled to pump energy, and local heterogeneity is formed by taming one intrinsic parameter when more energy is accumulated in a few neurons in the network. These results indicate that asymmetrical energy transport will induce the occurrence of heterogeneity in the network, and adaptive synaptic regulation on neurons is activated to keep local energy balance before reaching perfect synchronization. When external stimuli with diversity in intensity are applied, neurons are excited with energy diversity, and possible shape deformation is induced to keep local energy balance. As a result, heterogeneity is developed in a local area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Treibel T A, White S K, Moon J C. Myocardial tissue characterization: Histological and pathophysiological correlation. Curr Cardiovasc Imag Rep, 2014, 7: 9254

    Article  Google Scholar 

  2. Ramadan S, Paul N, Naguib H E. Standardized static and dynamic evaluation of myocardial tissue properties. Biomed Mater, 2017, 12: 025013

    Article  Google Scholar 

  3. Nerheim P, Birger-Botkin S, Piracha L, et al. Heart failure and sudden death in patients with tachycardia-induced cardiomyopathy and recurrent tachycardia. Circulation, 2004, 110: 247–252

    Article  Google Scholar 

  4. Göktepe S, Wong J, Kuhl E. Atrial and ventricular fibrillation: Computational simulation of spiral waves in cardiac tissue. Arch Appl Mech, 2010, 80: 569–580

    Article  MATH  Google Scholar 

  5. Cherry E M, Fenton F H. Visualization of spiral and scroll waves in simulated and experimental cardiac tissue. New J Phys, 2008, 10: 125016

    Article  Google Scholar 

  6. Chen J X, Xiao J, Qiao L Y, et al. Dynamics of scroll waves with time-delay propagation in excitable media. Commun Nonlinear Sci Numer Simul, 2018, 59: 331–337

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen J X, Zhang H, Qiao L Y, et al. Interaction of excitable waves emitted from two defects by pulsed electric fields. Commun Nonlinear Sci Numer Simul, 2018, 54: 202–209

    Article  MathSciNet  MATH  Google Scholar 

  8. Eason J, Trayanova N. Phase singularities and termination of spiral wave reentry. J Cardiovasc Electrophysiol, 2002, 13: 672–679

    Article  Google Scholar 

  9. Aron M, Herzog S, Parlitz U, et al. Spontaneous termination of chaotic spiral wave dynamics in human cardiac ion channel models. PLoS ONE, 2019, 14: e0221401

    Article  Google Scholar 

  10. Hussaini S, Venkatesan V, Biasci V, et al. Drift and termination of spiral waves in optogenetically modified cardiac tissue at sub-threshold illumination. eLife, 2021, 10: e59954

    Article  Google Scholar 

  11. Sato S. Mathematical properties of responses of a neuron model. Kybernetik, 1972, 11: 208–216

    Article  MATH  Google Scholar 

  12. Buchholtz F, Golowasch J, Epstein I R, et al. Mathematical model of an identified stomatogastric ganglion neuron. J Neurophysiol, 1992, 67: 332–340

    Article  Google Scholar 

  13. Knight B W. Dynamics of encoding in neuron populations: Some general mathematical features. Neural Computat, 2000, 12: 473–518

    Article  Google Scholar 

  14. Kaushik A, Sharma M D. Numerical analysis of a mathematical model for propagation of an electrical pulse in a neuron. Numer Methods Partial Differ Eq, 2008, 24: 1055–1079

    Article  MathSciNet  MATH  Google Scholar 

  15. Popovych S, Gail A, Schropp J. Complex dynamics of a single neuron model. Phys Rev E, 2006, 74: 041914

    Article  MathSciNet  Google Scholar 

  16. Mishra D, Yadav A, Ray S, et al. Exploring biological neuron models. Directions, The Research Magazine of IIT Kanpur, 2006, 7: 13–22

    Google Scholar 

  17. Conte E, Pierri G P, Federici A, et al. A model of biological neuron with terminal chaos and quantum-like features. Chaos Solitons Fractals, 2006, 30: 774–780

    Article  MATH  Google Scholar 

  18. Fu X, Yu Y. Reliable and efficient processing of sensory information at body temperature by rodent cortical neurons. Nonlinear Dyn, 2019, 98: 215–231

    Article  Google Scholar 

  19. Ditlevsen S, Greenwood P. The Morris-Lecar neuron model embeds a leaky integrate-and-fire model. J Math Biol, 2013, 67: 239–259

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhu F, Wang R, Aihara K, et al. Energy-efficient firing patterns with sparse bursts in the Chay neuron model. Nonlinear Dyn, 2020, 100: 2657–2672

    Article  Google Scholar 

  21. Song X, Wang H, Chen Y. Autapse-induced firing patterns transitions in the Morris-Lecar neuron model. Nonlinear Dyn, 2019, 96: 2341–2350

    Article  Google Scholar 

  22. Zhao Z, Li L, Gu H, et al. Different dynamics of repetitive neural spiking induced by inhibitory and excitatory autapses near subcritical Hopf bifurcation. Nonlinear Dyn, 2020, 99: 1129–1154

    Article  Google Scholar 

  23. Yue Y, Liu L, Liu Y, et al. Dynamical response, information transition and energy dependence in a neuron model driven by autapse. Non-linear Dyn, 2017, 90: 2893–2902

    Article  Google Scholar 

  24. Wang C, Guo S, Xu Y, et al. Formation of autapse connected to neuron and its biological function. Complexity, 2017, 2017: 5436737

    Article  MathSciNet  MATH  Google Scholar 

  25. Qu L, Du L, Cao Z, et al. Pattern transition of neuronal networks induced by chemical autapses with random distribution. Chaos Solitons Fractals, 2021, 144: 110646

    Article  MathSciNet  Google Scholar 

  26. Yilmaz E, Ozer M, Baysal V, et al. Autapse-induced multiple coherence resonance in single neurons and neuronal networks. Sci Rep, 2016, 6: 30914

    Article  Google Scholar 

  27. Qin H, Wu Y, Wang C, et al. Emitting waves from defects in network with autapses. Commun Nonlinear Sci Numer Simul, 2015, 23: 164–174

    Article  MathSciNet  MATH  Google Scholar 

  28. Ma J, Song X, Tang J, et al. Wave emitting and propagation induced by autapse in a forward feedback neuronal network. Neurocomputing, 2015, 167: 378–389

    Article  Google Scholar 

  29. Yao C, He Z, Nakano T, et al. Inhibitory-autapse-enhanced signal transmission in neural networks. Nonlinear Dyn, 2019, 97: 1425–1437

    Article  Google Scholar 

  30. Yilmaz E, Baysal V, Perc M, et al. Enhancement of pacemaker induced stochastic resonance by an autapse in a scale-free neuronal network. Sci China Tech Sci, 2016, 59: 364–370

    Article  Google Scholar 

  31. Lin H, Wang C, Deng Q, et al. Review on chaotic dynamics of memristive neuron and neural network. Nonlinear Dyn, 2021, 106: 959–973

    Article  Google Scholar 

  32. Yang R, Huang H M, Guo X. Memristive synapses and neurons for bioinspired computing. Adv Electron Mater, 2019, 5: 1900287

    Article  Google Scholar 

  33. Bao B C, Zhu Y X, Ma J, et al. Memristive neuron model with an adapting synapse and its hardware experiments. Sci China Tech Sci, 2021, 64: 1107–1117

    Article  Google Scholar 

  34. Ignatov M, Ziegler M, Hansen M, et al. A memristive spiking neuron with firing rate coding. Front Neurosci, 2015, 9: 376

    Article  Google Scholar 

  35. Kafraj M S, Parastesh F, Jafari S. Firing patterns of an improved Izhikevich neuron model under the effect of electromagnetic induction and noise. Chaos Solitons Fractals, 2020, 137: 109782

    Article  MathSciNet  Google Scholar 

  36. Lu L L, Jia Y, Xu Y, et al. Energy dependence on modes of electric activities of neuron driven by different external mixed signals under electromagnetic induction. Sci China Tech Sci, 2019, 62: 427–440

    Article  Google Scholar 

  37. Yuan Z X, Feng P H, Du M M, et al. Dynamical response of a neuron-astrocyte coupling system under electromagnetic induction and external stimulation. Chin Phys B, 2020, 29: 030504

    Article  Google Scholar 

  38. Zhang Y, Xu Y, Yao Z, et al. A feasible neuron for estimating the magnetic field effect. Nonlinear Dyn, 2020, 102: 1849–1867

    Article  Google Scholar 

  39. Liu Y, Xu W, Ma J, et al. A new photosensitive neuron model and its dynamics. Front Inform Technol Electron Eng, 2020, 21: 1387–1396

    Article  Google Scholar 

  40. Zhang X, Ma J. Wave filtering and firing modes in a light-sensitive neural circuit. J Zhejiang Univ Sci A, 2021, 22: 707–720

    Article  Google Scholar 

  41. Ma X W, Xu Y. Taming the hybrid synapse under energy balance between neurons. Chaos Solitons Fractals, 2022, 159: 112149

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang C, Sun G, Yang F, et al. Capacitive coupling memristive systems for energy balance. AEU-Int J Electron Commun, 2022, 153: 154280

    Article  Google Scholar 

  43. Zhou P, Zhang X, Ma J. How to wake up the electric synapse coupling between neurons? Nonlinear Dyn, 2022, 108: 1681–1695

    Article  Google Scholar 

  44. Xie Y, Yao Z, Ma J. Phase synchronization and energy balance between neurons. Front Inform Technol Electron Eng, 2022, doi: https://doi.org/10.1631/FITEE.2100563

  45. Kyprianidis I M, Papachristou V, Stouboulos I N, et al. Dynamics of coupled chaotic Bonhoeffer-van der Pol Oscillators. WSEAS Trans Syst, 2012, 11: 516–526

    Google Scholar 

  46. Zhou P, Yao Z, Ma J, et al. A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus. Chaos Solitons Fractals, 2021, 145: 110751

    Article  MathSciNet  Google Scholar 

  47. Guo Y, Zhu Z, Wang C, et al. Coupling synchronization between photoelectric neurons by using memristive synapse. Optik, 2020, 218: 164993

    Article  Google Scholar 

  48. Xie Y, Yao Z, Hu X, et al. Enhance sensitivity to illumination and synchronization in light-dependent neurons. Chin Phys B, 2021, 30: 120510

    Article  Google Scholar 

  49. Xie Y, Zhu Z G, Zhang X F, et al. Control of firing mode in nonlinear neuron circuit driven by photocurrent. Acta Phys Sin, 2021, 70: 210502

    Article  Google Scholar 

  50. Zhou P, Hu X, Zhu Z, et al. What is the most suitable Lyapunov function? Chaos Solitons Fractals, 2021, 150: 111154

    Article  MathSciNet  MATH  Google Scholar 

  51. Wu F, Guo Y, Ma J. Reproduce the biophysical function of chemical synapse by using a memristive synapse. Nonlinear Dyn, 2022, 109: 2063–2084

    Article  Google Scholar 

  52. Wang C, Lv M, Alsaedi A, et al. Synchronization stability and pattern selection in a memristive neuronal network. Chaos, 2017, 27: 113108

    Article  MathSciNet  Google Scholar 

  53. Rajagopal K, Jafari S, Karthikeyan A, et al. Effect of magnetic induction on the synchronizability of coupled neuron network. Chaos, 2021, 31: 083115

    Article  MathSciNet  Google Scholar 

  54. Ge M, Jia Y, Xu Y, et al. Wave propagation and synchronization induced by chemical autapse in chain Hindmarsh-Rose neural network. Appl Math Computat, 2019, 352: 136–145

    Article  MathSciNet  MATH  Google Scholar 

  55. Hussain I, Jafari S, Ghosh D, et al. Synchronization and chimeras in a network of photosensitive FitzHugh-Nagumo neurons. Nonlinear Dyn, 2021, 104: 2711–2721

    Article  Google Scholar 

  56. Hussain I, Ghosh D, Jafari S. Chimera states in a thermosensitive FitzHugh-Nagumo neuronal network. Appl Math Computat, 2021, 410: 126461

    Article  MathSciNet  MATH  Google Scholar 

  57. Tah F A, Tabi C B, Kofane T C. Pattern formation in the Fitzhugh-Nagumo neuron with diffusion relaxation. Chaos Solitons Fractals, 2021, 147: 110974

    Article  MathSciNet  Google Scholar 

  58. Yao Z, Wang C. Control the collective behaviors in a functional neural network. Chaos Solitons Fractals, 2021, 152: 111361

    Article  MathSciNet  MATH  Google Scholar 

  59. Lu L L, Yi M, Liu X Q. Energy-efficient firing modes of chay neuron model in different bursting kinetics. Sci China Tech Sci, 2022, 65: 1661–1674

    Article  Google Scholar 

  60. Yuan Y Y, Yang H, Han F, et al. Traveling chimera states in locally coupled memristive Hindmarsh-Rose neuronal networks and circuit simulation. Sci China Tech Sci, 2022, 65: 1445–1455

    Article  Google Scholar 

  61. Bao H, Hua Z Y, Liu W B, et al. Discrete memristive neuron model and its interspike interval-encoded application in image encryption. Sci China Tech Sci, 2021, 64: 2281–2291

    Article  Google Scholar 

  62. Chen M, Qi J W, Wu H G, et al. Bifurcation analyses and hardware experiments for bursting dynamics in non-autonomous memristive FitzHugh-Nagumo circuit. Sci China Tech Sci, 2020, 63: 1035–1044

    Article  Google Scholar 

  63. Bao H, Chen M, Wu H G, et al. Memristor initial-boosted coexisting plane bifurcations and its extreme multi-stability reconstitution in two-memristor-based dynamical system. Sci China Tech Sci, 2020, 63: 603–613

    Article  Google Scholar 

  64. Li Y Y, Gu H G, Jia B, et al. The nonlinear mechanism for the same responses of neuronal bursting to opposite self-feedback modulations of autapse. Sci China Tech Sci, 2021, 64: 1459–1471

    Article  Google Scholar 

  65. Ge M Y, Wang G W, Jia Y. Influence of the Gaussian colored noise and electromagnetic radiation on the propagation of subthreshold signals in feedforward neural networks. Sci China Tech Sci, 2021, 64: 847–857

    Article  Google Scholar 

  66. Wu S F, Wang L B, Zhao Y W, et al. Chronic electrical stimulation induces functional network changes in cortical neuron cultures. Sci China Tech Sci, 2020, 63: 637–647

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ma.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12072139, 12062009).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Yao, Z. & Ma, J. Formation of local heterogeneity under energy collection in neural networks. Sci. China Technol. Sci. 66, 439–455 (2023). https://doi.org/10.1007/s11431-022-2188-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2188-2

Keywords

Navigation