Skip to main content
Log in

How to define energy function for memristive oscillator and map

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

During the release and propagation of intracellular and extracellular ions, electromagnetic field is induced accompanying with propagation of energy flow. The firing mode is dependent on the energy level, and external energy injection will induce distinct mode transition. Exact energy function for a neuron developed from a neural circuit can be obtained directly by applying scale transformation for the physical field energy. For generic neuron models, dimensionless Hamilton energy function can be obtained by using Helmholtz theorem, and this energy function can be considered as a specific Lyapunov function. In this review, approach of energy function for memristive neuron is discussed by designing equivalent neural circuit coupled by two kinds of memristors, which are dependent on the magnetic flux and charge flux, respectively. A scheme is suggested to get equivalent energy function for memristive neuron in the form of map by introducing a scale parameter. The memristive map reduced from the memristive neuron can produce similar attractors and firing modes under applying the same parameters, and the average Hamilton energy for the map neuron is decreased because of regulation from the scale parameter. On the other hand, a memristive map is replaced by an equivalent memristive oscillator for finding an equivalent Hamilton energy function according to the Helmholtz theorem. The energy scheme can be helpful for further investigating energy property of artificial neurons, maps and discrete memristors. It also provides evidence that maps are more suitable for investigating neural activities than neuron oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data are available upon reasonable request.

References

  1. Kavehei, O., Iqbal, A., Kim, Y.S., et al.: The fourth element: characteristics, modelling and electromagnetic theory of the memristor. Proc. Royal Soc. A: Math. Phys. Eng. Sci. 466, 2175–2202 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Yeşil, A., Babacan, Y., Kaçar, F.: A new DDCC based memristor emulator circuit and its applications. Microelectron. J. 45, 282–287 (2014)

    Google Scholar 

  3. Zidan, M.A., Fahmy, H.A.H., Hussain, M.M., et al.: Memristor-based memory: the sneak paths problem and solutions. Microelectron. J. 44, 176–183 (2013)

    Google Scholar 

  4. Wang, L., Yang, C.H., Wen, J., et al.: Overview of emerging memristor families from resistive memristor to spintronic memristor. J. Mater. Sci.: Mater. Electron. 26, 4618–4628 (2015)

    Google Scholar 

  5. Goswami, S., Pramanick, R., Patra, A., et al.: Decision trees within a molecular memristor. Nature 597, 51–56 (2021)

    Google Scholar 

  6. Kuznetsov, N., Mokaev, T., Ponomarenko, V., et al.: Hidden attractors in Chua circuit: mathematical theory meets physical experiments. Nonlinear Dyn. 111, 5859–5887 (2023)

    Google Scholar 

  7. Wang, E., Yan, S., Sun, X., et al.: Analysis of bifurcation mechanism of new hyperchaotic system, circuit implementation, and synchronization. Nonlinear Dyn. 111, 3869–3885 (2023)

    Google Scholar 

  8. Vijay, S.D., Thamilmaran, K., Ahamed, A.I.: Superextreme spiking oscillations and multistability in a memristor-based Hindmarsh-Rose neuron model. Nonlinear Dyn. 111, 789–799 (2023)

    Google Scholar 

  9. Xu, H., Zhang, Z., Peng, M.: Novel bursting patterns and the bifurcation mechanism in a piecewise smooth Chua’s circuit with two scales. Nonlinear Dyn. 108, 1755–1771 (2022)

    Google Scholar 

  10. Zhang, X., Ma, J.: Wave filtering and firing modes in a light-sensitive neural circuit. J. Zhejiang Univ. Sci. A 9, 707–720 (2021)

    Google Scholar 

  11. Guan, M.J., Liao, W.H.: On the equivalent circuit models of piezoelectric ceramics. Ferroelectrics 386, 77–87 (2009)

    Google Scholar 

  12. Karthikeyan, A., Cimen, M.E., Akgul, A., et al.: Persistence and coexistence of infinite attractors in a fractal Josephson junction resonator with unharmonic current phase relation considering feedback flux effect. Nonlinear Dyn. 103, 1979–1998 (2021)

    Google Scholar 

  13. Zhang, Y., Xu, Y., Yao, Z., et al.: A feasible neuron for estimating the magnetic field effect. Nonlinear Dyn. 102, 1849–1867 (2020)

    Google Scholar 

  14. Xie, Y., Yao, Z., Hu, X., et al.: Enhance sensitivity to illumination and synchronization in light-dependent neurons. Chin. Phys. B 30, 120510 (2021)

    Google Scholar 

  15. Liu, Y., Xu, W., Ma, J., et al.: A new photosensitive neuron model and its dynamics. Front. Informa. Technol. Electron. Eng. 21, 1387–1396 (2020)

    Google Scholar 

  16. Ibrahim, O., Hassan, S.M., Abdulkarim, A., et al.: Design of wheatstone bridge based thermistor signal conditioning circuit for temperature measurement. J. Eng. Sci. Technol. Rev. 12, 12–17 (2019)

    Google Scholar 

  17. Naveen Kumar, V., Lakshmi Narayana, K.V.: Development of thermistor signal conditioning circuit using artificial neural networks. IET Sci. Meas. Technol. 9, 955–961 (2015)

    Google Scholar 

  18. Groschner, L.N., Malis, J.G., Zuidinga, B., et al.: A biophysical account of multiplication by a single neuron. Nature 603, 119–123 (2022)

    Google Scholar 

  19. Ma, J.: Biophysical neurons, energy, and synapse controllability: a review. J. Zhejiang Univ. Sci. A 24, 109–129 (2023)

    Google Scholar 

  20. Wu, F., Hu, X., Ma, J.: Estimation of the effect of magnetic field on a memristive neuron. Appl. Math. Comput. 432, 127366 (2022)

    MathSciNet  MATH  Google Scholar 

  21. Wu, F., Ma, J., Zhang, G.: A new neuron model under electromagnetic field. Appl. Math. Comput. 347, 590–599 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Di Maio, V., Santillo, S., Ventriglia, F.: Synaptic dendritic activity modulates the single synaptic event. Cogn. Neurodyn. 15, 279–297 (2021)

    Google Scholar 

  23. Wang, C., Yao, Z., Xu, W., et al.: Phase synchronization between nonlinear circuits by capturing electromagnetic field energy. Mod. Phys. Lett. B 34, 2050323 (2020)

    MathSciNet  Google Scholar 

  24. Zhou, P., Ma, J., Tang, J.: Clarify the physical process for fractional dynamical systems. Nonlinear Dyn. 100, 2353–2364 (2020)

    Google Scholar 

  25. Zhou, P., Zhang, X., Hu, X., et al.: Energy balance between two thermosensitive circuits under field coupling. Nonlinear Dyn. 110, 1879–1895 (2022)

    Google Scholar 

  26. Ren, L., Lin, M.H., Abdulwahab, A., et al.: Global dynamical analysis of the integer and fractional 4D hyperchaotic Rabinovich system. Chaos, Solit. Fract. 169, 113275 (2023)

    MathSciNet  Google Scholar 

  27. Leutcho, G.D., Khalaf, A.J.M., Njitacke Tabekoueng, Z., et al.: A new oscillator with mega-stability and its Hamilton energy: infinite coexisting hidden and self-excited attractors. Chaos 30, 033112 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Njitacke, Z.T., Takembo, C.N., Awrejcewicz, J., et al.: Hamilton energy, complex dynamical analysis and information patterns of a new memristive FitzHugh-Nagumo neural network. Chaos, Solit. Fract. 160, 112211 (2022)

    MathSciNet  MATH  Google Scholar 

  29. Rong, K., Bao, H., Li, H., et al.: Memristive Hénon map with hidden Neimark-Sacker bifurcations. Nonlinear Dyn. 108, 4459–4470 (2022)

    Google Scholar 

  30. Peng, Y., Sun, K., He, S.: A discrete memristor model and its application in Hénon map. Chaos, Solitons Fractals 137, 109873 (2020)

    MathSciNet  MATH  Google Scholar 

  31. Fouda, M.E., Radwan, A.G.: Charge controlled memristor-less memcapacitor emulator. Electron. Lett. 48, 1454–1455 (2012)

    Google Scholar 

  32. Petrović, P.B.: Charge-controlled grounded memristor emulator circuits based on Arbel-Goldminz cell with variable switching behaviour. Analog Integr. Circ. Sig. Process 113, 373–381 (2022)

    Google Scholar 

  33. Yang, F., Xu, Y., Ma, J.: A memristive neuron and its adaptability to external electric field. Chaos 33, 023110 (2023)

    MathSciNet  Google Scholar 

  34. Lin, R., Shi, G., Qiao, F., et al.: Research progress and applications of memristor emulator circuits. Microelectron. J. 133, 105702 (2023)

    Google Scholar 

  35. Yao, Z., Zhou, P., Alsaedi, A., et al.: Energy flow-guided synchronization between chaotic circuits. Appl. Math. Comput. 374, 124998 (2020)

    MathSciNet  MATH  Google Scholar 

  36. Bao, B., Hu, J., Cai, J., et al.: Memristor-induced mode transitions and extreme multistability in a map-based neuron model. Nonlinear Dyn. 111, 3765–3779 (2023)

    Google Scholar 

  37. Vijayakumar, M.D., Natiq, H., Meli, M.I.T., et al.: Hamiltonian energy computation of a novel memristive mega-stable oscillator (MMO) with dissipative, conservative and repelled dynamics. Chaos, Solit. Fract. 155, 111765 (2022)

    Google Scholar 

  38. Wang, G., Xu, Y., Ge, M., et al.: Mode transition and energy dependence of FitzHugh-Nagumo neural model driven by high-low frequency electromagnetic radiation. AEU-Int. J. Electron. Commun. 120, 153209 (2020)

    Google Scholar 

  39. Xie, Y., Zhou, P., Ma, J.: Energy balance and synchronization via inductive-coupling in functional neural circuits. Appl. Math. Model. 113, 175–187 (2023)

    MathSciNet  MATH  Google Scholar 

  40. Kobe, D.H.: Helmholtz’s theorem revisited. Am. J. Phys. 54, 552–554 (1986)

    Google Scholar 

  41. Song, F., Liu, Y., Shen, D., et al.: Learning control for motion coordination in wafer scanners: toward gain adaptation. IEEE Trans. Industr. Electron. 69, 13428–13438 (2022)

    Google Scholar 

  42. Zhang, C., Kordestani, H., Shadabfar, M.: A combined review of vibration control strategies for high-speed trains and railway infrastructures: challenges and solutions. J. Low Freq. Noise Vib. Active Control 42, 272–291 (2023)

    Google Scholar 

  43. Li, D., Yu, H., Tee, K.P., et al.: On time-synchronized stability and control. IEEE Trans. Syst. Man Cyber. Syst. 52, 2450–2463 (2021)

    Google Scholar 

  44. Wang, R., Wang, Y., Xu, X., et al.: Brain works principle followed by neural information processing: a review of novel brain theory. Artif. Intell. Rev. (2023). https://doi.org/10.1007/s10462-023-10520-5

    Article  Google Scholar 

  45. Xia, C., Zhu, Y., Zhou, S., et al.: Simulation study on transient performance of a marine engine matched with high-pressure SCR system. Int. J. Engine Res. 24, 1327–1345 (2023)

    Google Scholar 

  46. Yang, F., Wang, Y., Ma, J.: Creation of heterogeneity or defects in a memristive neural network under energy flow. Commun. Nonlinear Sci. Numer. Simul. 119, 107127 (2023)

    MATH  Google Scholar 

  47. Xie, Y., Yao, Z., Ma, J.: Formation of local heterogeneity under energy collection in neural networks. Sci. China Technol. Sci. 66, 439–455 (2023)

    Google Scholar 

  48. Shen, B. W., Pielke, R. A. Sr, Zeng, X.: The 50th Anniversary of the Metaphorical Butterfly Effect since Lorenz (1972): Multistability, Multiscale Predictability, and Sensitivity in Numerical Models. Atmosphere, 14(8): 1279 (2023)

Download references

Acknowledgements

This project is supported by the National Natural Science Foundation of China under Grant Nos. 12072139.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest with this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$ \left\{ {\begin{array}{*{20}l} {A_{{11}} = \frac{{i_{s}^{\prime } + (a^{\prime } + b^{\prime } z^{2} )(x - e_{1} ) - (c^{\prime } + d^{\prime } w^{2} )(x - e_{2} ) + x - \frac{1}{2}x^{2} - \frac{1}{3}x^{3} + \frac{1}{2}(x - e_{1} )(a^{\prime } + 3b^{\prime } z^{2} ) + \frac{1}{2}c^{\prime } (x - e_{2} )}}{{x + \frac{1}{2}(a^{\prime } z + b^{\prime } z^{3} ) + \frac{1}{2}w}}} \hfill \\ {A_{{22}} = \frac{{\alpha ^{2} [e - \xi y - \frac{1}{2}(a^{\prime } z + b^{\prime } z^{3} ) - \frac{1}{2}w - \frac{{3b^{\prime } }}{{2a^{\prime } }}z^{2} (x - e_{1} ) - \frac{1}{2}(e_{2} - e_{1} )]}}{y}} \hfill \\ {A_{{33}} = \frac{{ - 2e_{1} - (a^{\prime } z + b^{\prime } z^{3} ) - w + 2\frac{y}{{a^{\prime } }}}}{{(x - e_{1} )(a^{\prime } + 3b^{\prime } z^{2} )}}} \hfill \\ {A_{{44}} = \frac{{ - 2c^{\prime } e_{2} + 2d^{\prime } w^{2} (x - e_{2} ) - c^{\prime } (a^{\prime } z + b^{\prime } z^{3} ) - c^{\prime } w - 2y}}{{(x - e_{2} )}}} \hfill \\ \end{array} } \right. $$
(A1)
$$ \begin{aligned} \left( \begin{gathered} {\dot{x}} \hfill \\ {\dot{y}} \hfill \\ {\dot{z}} \hfill \\ {\dot{w}} \hfill \\ \end{gathered} \right) = & F_{c} + F_{d} = \left( {\begin{array}{*{20}l} { - y - \frac{1}{2}(x - e_{1} )(a^{\prime } + 3b^{\prime } z^{2} ) - \frac{1}{2}c^{\prime } (x - e_{2} )} \hfill \\ {\alpha x + \frac{1}{2}\alpha (a^{\prime } z + b^{\prime } z^{3} ) + \frac{1}{2}\alpha w + \frac{{3\alpha b^{\prime } }}{{2a^{\prime } }}z^{2} (x - e_{1} ) + \frac{1}{2}\alpha (e_{2} - e_{1} )} \hfill \\ {x + \frac{1}{2}(a^{\prime } z + b^{\prime } z^{3} ) + \frac{1}{2}w - \frac{y}{{a^{\prime } }}} \hfill \\ {c^{\prime } x + \frac{1}{2}c^{\prime } a^{\prime } z + b^{\prime } z^{3} ) + \frac{1}{2}c^{\prime } w + y} \hfill \\ \end{array} } \right) \\ + & \left( {\begin{array}{*{20}l} {i_{s}^{\prime } + (a^{\prime } + b^{\prime } z^{2} )(x - e_{1} ) - (c^{\prime } + d^{\prime } w^{2} )(x - e_{2} ) + x - \frac{1}{2}x^{2} - \frac{1}{3}x^{3} + \frac{1}{2}(x - e_{1} )(a^{\prime } + 3b^{\prime } z^{2} ) + \frac{1}{2}c^{\prime } (x - e_{2} )} \hfill \\ {\alpha e - \alpha \xi y - \frac{1}{2}\alpha (a^{\prime } z + b^{\prime } z^{3} ) - \frac{1}{2}\alpha w - \frac{{3\alpha b^{\prime } }}{{2a^{\prime } }}z^{2} (x - e_{1} ) - \frac{1}{2}\alpha (e_{2} - e_{1} )} \hfill \\ { - e_{1} - \frac{1}{2}(a^{\prime } z + b^{\prime } z^{3} ) - \frac{1}{2}w + \frac{y}{{a^{\prime } }}} \hfill \\ { - c^{\prime } e_{2} + d^{\prime } w^{2} (x - e_{2} ) - \frac{1}{2}c^{\prime } (a^{\prime } z + b^{\prime } z^{3} ) - \frac{1}{2}c^{\prime } w - y} \hfill \\ \end{array} } \right); \\ = & \left( \begin{gathered} 0\quad - \alpha \quad {\kern 1pt} \; - 1\quad - c^{\prime } \hfill \\ \alpha \quad \;\;0\quad \;\;\frac{\alpha }{{a^{\prime } }}{\kern 1pt} \;\quad - \alpha \hfill \\ 1\quad - \frac{\alpha }{{a^{\prime } }}{\kern 1pt} \;\quad 0\quad \quad 0 \hfill \\ c^{\prime } \quad \alpha \quad \quad 0\;\quad \;\;0\quad \hfill \\ \end{gathered} \right)\left( \begin{gathered} x + \frac{1}{2}(a^{\prime } z + b^{\prime } z^{3} ) + \frac{1}{2}w \hfill \\ \frac{y}{\alpha } \hfill \\ \frac{1}{2}(x - e_{1} )(a^{\prime } + 3b^{\prime } z^{2} ) \hfill \\ \frac{1}{2}(x - e_{2} ) \hfill \\ \end{gathered} \right)\;\; + \left( \begin{gathered} A_{{11}} \quad 0\quad {\kern 1pt} \;\;0\quad \;\;0 \hfill \\ 0\quad \;\;A_{{22}} \quad \;0\quad \;0 \hfill \\ 0\quad \quad 0{\kern 1pt} \;\quad A_{{33}} \quad 0 \hfill \\ 0\quad \quad 0\quad \quad 0\;\;\;A_{{44}} \quad \hfill \\ \end{gathered} \right)\left( \begin{gathered} x + \frac{1}{2}(a^{\prime } z + b^{\prime } z^{3} ) + \frac{1}{2}w \hfill \\ \frac{y}{\alpha } \hfill \\ \frac{1}{2}(x - e_{1} )(a^{\prime } + 3b^{\prime } z^{2} ) \hfill \\ \frac{1}{2}(x - e_{2} ) \hfill \\ \end{gathered} \right)\quad ; \\ \end{aligned} $$
(A2)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Xie, Y. & Ma, J. How to define energy function for memristive oscillator and map. Nonlinear Dyn 111, 21903–21915 (2023). https://doi.org/10.1007/s11071-023-09039-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09039-9

Keywords

Navigation