Skip to main content
Log in

Memristive effects on an improved discrete Rulkov neuron model

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

A change in neuronal-action potential can generate a magnetically induced current during the release and propagation of intracellular ions. To better characterize the electromagnetic-induction effect, this paper presents an improved discrete Rulkov (ID-Rulkov) neuron model by coupling a discrete model of a memristor with sine memductance into a discrete Rulkov neuron model. The ID-Rulkov neuron model possesses infinite invariant points, and its memristor-induced stability effect is evaluated by detecting the routes of period-doubling and Neimark-Sacker bifurcations. We investigated the memristor-induced dynamic effects on the neuron model using bifurcation plots and firing patterns. Meanwhile, we theoretically expounded the memristor initial-boosting mechanism of infinite coexisting patterns. The results show that the ID-Rulkov neuron model can realize diverse neuron firing patterns and produce hyperchaotic attractors that are nondestructively boosted by the initial value of the memristor, indicating that the introduced memristor greatly benefits the original neuron model. The hyperchaotic attractors initially boosted by the memristor were verified by hardware experiments based on a hardware platform. In addition, pseudorandom number generators are designed using the ID-Rulkov neuron model, and their high randomness is demonstrated based onstrict test results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shilnikov A L, Rulkov N F. Origin of chaos in a two-dimensional map modeling spiking-bursting neural activity. Int J Bifurcation Chaos, 2003, 13: 3325–3340

    Article  MathSciNet  MATH  Google Scholar 

  2. Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol, 1952, 117: 500–544

    Article  Google Scholar 

  3. Rajamani V, Kim H, Chua L. Morris-Lecar model of third-order barnacle muscle fiber is made of volatile memristors. Sci China Inf Sci, 2018, 61: 060426

    Article  MathSciNet  Google Scholar 

  4. Chua L. If it’s pinched it’s a memristor. Semicond Sci Technol, 2014, 29: 104001

    Article  Google Scholar 

  5. Eshraghian K, Kavehei O, Cho K R, et al. Memristive device fundamentals and modeling: Applications to circuits and systems simulation. Proc IEEE, 2012, 100: 1991–2007

    Article  Google Scholar 

  6. Bao H, Chen Z G, Cai J M, et al. Memristive cyclic three-neuron-based neural network with chaos and global coexisting attractors. Sci China Tech Sci, 2022, 65: 2582–2592

    Article  Google Scholar 

  7. Chen C, Min F, Zhang Y, et al. Memristive electromagnetic induction effects on Hopfield neural network. Nonlinear Dyn, 2021, 106: 2559–2576

    Article  Google Scholar 

  8. Ma J, Yang Z, Yang L, et al. A physical view of computational neurodynamics. J Zhejiang Univ Sci A, 2019, 20: 639–659

    Article  Google Scholar 

  9. Corinto F, Forti M. Memristor circuits: Bifurcations without parameters. IEEE Trans Circuits Syst I, 2017, 64: 1540–1551

    Article  Google Scholar 

  10. Hong Q, Chen H, Sun J, et al. Memristive circuit implementation of a self-repairing network based on biological astrocytes in robot application. IEEE Trans Neural Netw Learn Syst, 2022, 33: 2106–2120

    Article  Google Scholar 

  11. Li K, Bao H, Li H, et al. Memristive rulkov neuron model with magnetic induction effects. IEEE Trans Ind Inf, 2022, 18: 1726–1736

    Article  Google Scholar 

  12. Zhong Y, Tang J, Li X, et al. Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing. Nat Commun, 2021, 12: 408

    Article  Google Scholar 

  13. Hua L, Zhu H, Shi K, et al. Novel finite-time reliable control design for memristor-based inertial neural networks with mixed time-varying delays. IEEE Trans Circuits Syst I, 2021, 68: 1599–1609

    Article  MathSciNet  Google Scholar 

  14. Mannan Z I, Adhikari S P, Yang C, et al. Memristive imitation of synaptic transmission and plasticity. IEEE Trans Neural Netw Learn Syst, 2019, 30: 3458–3470

    Article  Google Scholar 

  15. Kumar S, Strachan J P, Williams R S. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature, 2017, 548: 318–321

    Article  Google Scholar 

  16. Lin P, Li C, Wang Z, et al. Three-dimensional memristor circuits as complex neural networks. Nat Electron, 2020, 3: 225–232

    Article  Google Scholar 

  17. Bilotta E, Pantano P, Vena S. Speeding up cellular neural network processing ability by embodying memristors. IEEE Trans Neural Netw Learn Syst, 2017, 28: 1228–1232

    Article  Google Scholar 

  18. Lv M, Wang C, Ren G, et al. Model of electrical activity in a neuron under magnetic flow effect. NOnlinear Dyn, 2016, 85: 1479–1490

    Article  Google Scholar 

  19. Ma J, Tang J. A review for dynamics in neuron and neuronal network. Nonlinear Dyn, 2017, 89: 1569–1578

    Article  MathSciNet  Google Scholar 

  20. Bao B C, Zhu Y X, Ma J, et al. Memristive neuron model with an adapting synapse and its hardware experiments. Sci China Tech Sci, 2021, 64: 1107–1117

    Article  Google Scholar 

  21. Ge M, Jia Y, Xu Y, et al. Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn, 2018, 91: 515–523

    Article  Google Scholar 

  22. Bao H, Gu Y, Xu Q, et al. Parallel bi-memristor hyperchaotic map with extreme multistability. Chaos Solitons Fractals, 2022, 160: 112273

    Article  Google Scholar 

  23. Li H, Hua Z, Bao H, et al. Two-dimensional memristive hyperchaotic maps and application in secure communication. IEEE Trans Ind Electron, 2021, 68: 9931–9940

    Article  Google Scholar 

  24. Bao H, Hua Z, Li H, et al. Discrete memristor hyperchaotic maps. IEEE Trans Circuits Syst I, 2021, 68: 4534–4544

    Article  Google Scholar 

  25. Rulkov N F. Modeling of spiking-bursting neural behavior using two-dimensional map. Phys Rev E, 2002, 65: 041922

    Article  MathSciNet  MATH  Google Scholar 

  26. Rulkov N F. Regularization of synchronized chaotic bursts. Phys Rev Lett, 2001, 86: 183–186

    Article  Google Scholar 

  27. Wagemakers A, Sanjuán M A F. Electronic circuit implementation of the chaotic Rulkov neuron model. J Franklin Institute, 2013, 350: 2901–2910

    Article  MathSciNet  MATH  Google Scholar 

  28. Bao H, Liu W, Ma J, et al. Memristor initial-offset boosting in memristive HR neuron model with hidden firing patterns. Int J Bifurcation Chaos, 2020, 30: 2030029

    Article  MathSciNet  MATH  Google Scholar 

  29. Kim J, Pershin Y V, Yin M, et al. An experimental proof that resistance-switching memory cells are not memristors. Adv Electron Mater, 2020, 6: 2000010

    Article  Google Scholar 

  30. Pershin Y V, Kim J, Datta T, et al. An experimental demonstration of the memristor test. Physica E, 2022, 142: 115290

    Article  Google Scholar 

  31. Lu L L, Yi M, Liu X Q. Energy-efficient firing modes of chay neuron model in different bursting kinetics. Sci China Tech Sci, 2022, 65: 1661–1674

    Article  Google Scholar 

  32. Lv M, Ma J, Yao Y G, et al. Synchronization and wave propagation in neuronal network under field coupling. Sci China Tech Sci, 2019, 62: 448–457

    Article  Google Scholar 

  33. Bao H, Chen M, Wu H G, et al. Memristor initial-boosted coexisting plane bifurcations and its extreme multi-stability reconstitution in two-memristor-based dynamical system. Sci China Tech Sci, 2020, 63: 603–613

    Article  Google Scholar 

  34. Bandt C, Pompe B. Permutation entropy: A natural complexity measure for time series. Phys Rev Lett, 2002, 88: 174102

    Article  Google Scholar 

  35. Theiler J. Efficient algorithm for estimating the correlation dimension from a set of discrete points. Phys Rev A, 1987, 36: 4456–4462

    Article  MathSciNet  Google Scholar 

  36. Bakiri M, Guyeux C, Couchot J F, et al. A hardware and secure pseudorandom generator for constrained devices. IEEE Trans Ind Inf, 2018, 14: 3754–3765

    Article  Google Scholar 

  37. Rukhin A L, Soto J, Nechvatal J, et al. A statistical test suite for random and pseudorandom number generators for cryptographic applications. Special Publication (NIST SP). Gaithersburg: National Institute of Standards and Technology, 2010

    Google Scholar 

  38. Rong K, Bao H, Li H, et al. Memristive Hénon map with hidden Neimark-Sacker bifurcations. Nonlinear Dyn, 2022, 108: 4459–4470

    Article  Google Scholar 

  39. Jiang H, Liu Y, Wei Z, et al. A new class of two-dimensional chaotic maps with closed curve fixed points. Int J Bifurcation Chaos, 2019, 29: 1950094

    Article  MathSciNet  MATH  Google Scholar 

  40. Jiang H, Liu Y, Wei Z, et al. Hidden chaotic attractors in a class of two-dimensional maps. Nonlinear Dyn, 2016, 85: 2719–2727

    Article  MathSciNet  Google Scholar 

  41. Panahi S, Sprott J C, Jafari S. Two simplest quadratic chaotic maps without equilibrium. Int J Bifurcation Chaos, 2018, 28: 1850144

    Article  MathSciNet  MATH  Google Scholar 

  42. Bao H, Hua Z Y, Liu W B, et al. Discrete memristive neuron model and its interspike interval-encoded application in image encryption. Sci China Tech Sci, 2021, 64: 2281–2291

    Article  Google Scholar 

  43. Hua Z Y, Zhou B H, Zhang Y X, et al. Modular chaotification model with FPGA implementation. Sci China Tech Sci, 2021, 64: 1472–1484

    Article  Google Scholar 

  44. Zhang L, Chen Z, Rao W, et al. Efficient and secure non-coherent ofdm-based overlapped chaotic chip position shift keying system: Design and performance analysis. IEEE Trans Circuits Syst I, 2020, 67: 309–321

    Article  Google Scholar 

  45. Bao H, Hua Z, Li H, et al. Memristor-based hyperchaotic maps and application in auxiliary classifier generative adversarial nets. IEEE Trans Ind Inf, 2022, 18: 5297–5306

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BoCheng Bao.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 62271088 and 62201094) and the Scientific Research Foundation of Jiangsu Provincial Education Department, China (Grant No. 22KJB510001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, H., Li, K., Ma, J. et al. Memristive effects on an improved discrete Rulkov neuron model. Sci. China Technol. Sci. 66, 3153–3163 (2023). https://doi.org/10.1007/s11431-023-2432-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-023-2432-1

Navigation