Skip to main content
Log in

Modular chaotification model with FPGA implementation

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Chaotic systems are an effective tool for various applications, including information security and internet of things. Many chaotic systems may have the weaknesses of incomplete output distributions, discontinuous chaotic regions, and simple chaotic behaviors. These may result in many negative influences in practical applications utilizing chaos. To deal with these issues, this study introduces a modular chaotification model (MCM) to increase the dynamic properties of current one-dimensional (1D) chaotic maps. To exhibit the effect of the MCM, three 1D chaotic maps are improved using the MCM as examples. Studies of the resulting properties show the robust and complex dynamics of these improved chaotic maps. Moreover, we implement these improved chaotic maps of MCM in a field-programmable gate array hardware platform and apply them to the application of PRNG. Performance analyses verify that these chaotic maps improved by the MCM have more complicated chaotic behaviors and wider chaotic ranges than the existing and several new chaotic maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Almeida Ramos E, Bontorin G, Reis R. A new nonlinear global placement for FPGAs: The chaotic place. IEEE Trans Circuits Syst I, 2019, 66: 2165–2174

    Article  MathSciNet  Google Scholar 

  2. Gangarajaiah R, Abdulaziz M, Sjoland H, et al. A digitally assisted nonlinearity mitigation system for tunable channel select filters. IEEE Trans Circuits Syst II, 2016, 63: 69–73

    Article  Google Scholar 

  3. Qin J, Zhang G, Zheng W X, et al. Adaptive sliding mode consensus tracking for second-order nonlinear multiagent systems with actuator faults. IEEE Trans Cybern, 2019, 49: 1605–1615

    Article  Google Scholar 

  4. Coraggio M, DeLellis P, Hogan S J, et al. Synchronization of networks of piecewise-smooth systems. IEEE Control Syst Lett, 2018, 2: 653–658

    Article  MathSciNet  Google Scholar 

  5. Xu C J, Liao M X, Li P L. Bifurcation control of a fractional-order delayed competition and cooperation model of two enterprises. Sci China Tech Sci, 2019, 62: 2130–2143

    Article  Google Scholar 

  6. Shi S, Xiao M, Rong L N, et al. Stability and bifurcation control of a neuron system under a novel fractional-order PD controller. Sci China Tech Sci, 2019, 62: 2120–2129

    Article  Google Scholar 

  7. Wang N, Li C, Bao H, et al. Generating multi-scroll chuas attractors via simplified piecewise-linear chuas diode. IEEE Trans Circuits Syst I, 2019, 66: 4767–4779

    Article  Google Scholar 

  8. Vaidyanathan S, Volos C. Advances and Applications in Chaotic Systems. Berlin, Heidelberg: Springer, 2016. 1–38

    Book  MATH  Google Scholar 

  9. Bao H, Chen M, Wu H G, et al. Memristor initial-boosted coexisting plane bifurcations and its extreme multi-stability reconstitution in two-memristor-based dynamical system. Sci China Tech Sci, 2020, 63: 603–613

    Article  Google Scholar 

  10. Bao B C, Xu Q, Bao H, et al. Extreme multistability in a memristive circuit. Electron Lett, 2016, 52: 1008–1010

    Article  Google Scholar 

  11. Li C, Feng B, Li S, et al. Dynamic analysis of digital chaotic maps via state-mapping networks. IEEE Trans Circuits Syst I, 2019, 66: 2322–2335

    Article  MathSciNet  Google Scholar 

  12. Lasota A, Mackey M C. Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics. Berlin, Heidelberg: Springer Science & Business Media, 1994

    Book  MATH  Google Scholar 

  13. Zhang X F, Zheng J K, Wu G Q, et al. Mixed mode oscillations as well as the bifurcation mechanism in a Duffings oscillator with two external periodic excitations. Sci China Tech Sci, 2019, 62: 1816–1824

    Article  Google Scholar 

  14. Hua Z, Zhou Y. Exponential chaotic model for generating robust chaos. IEEE Trans Syst Man Cybern Syst, 2019, 1–12

  15. Lin Z S, Yu S M, Lu J H, et al. Design and ARM-embedded implementation of a chaotic map-based real-time secure video communication system. IEEE Trans Circuits Syst Video Technol, 2015, 25: 1203–1216

    Article  Google Scholar 

  16. Fan H W, Wang Y F, Chen M J, et al. Chaos synchronization with dual-channel time-delayed couplings. Sci China Tech Sci, 2016, 59: 428–435

    Article  Google Scholar 

  17. Hua Z, Zhang Y, Zhou Y. Two-dimensional modular chaotification system for improving chaos complexity. IEEE Trans Signal Process, 2020, 68: 1937–1949

    Article  MathSciNet  Google Scholar 

  18. Li C Y, Chen Y H, Chang T Y, et al. Period extension and randomness enhancement using high-throughput reseeding-mixing PRNG. IEEE Trans VLSI Syst, 2012, 20: 385–389

    Article  Google Scholar 

  19. Wieczorek P Z, Golofit K. True random number generator based on flip-flop resolve time instability boosted by random chaotic source. IEEE Trans Circuits Syst I, 2018, 65: 1279–1292

    Article  Google Scholar 

  20. Roy S, Chatterjee S, Das A K, et al. Chaotic map-based anonymous user authentication scheme with user biometrics and fuzzy extractor for crowdsourcing internet of things. IEEE Internet Things J, 2018, 5: 2884–2895

    Article  Google Scholar 

  21. Ozturk I, Kilic R. Higher dimensional baker map and its digital implementation with LSB-extension method. IEEE Trans Circuits Syst I, 2019, 66: 4780–4792

    Article  MathSciNet  Google Scholar 

  22. Wu Y, Hua Z, Zhou Y. n-dimensional discrete cat map generation using laplace expansions. IEEE Trans Cybern, 2016, 46: 2622–2633

    Article  Google Scholar 

  23. Hilborn R C. Chaos and Nonlinear Dynamics: An Introduction for Scientists And Engineers. New York: Oxford University Press, 2001

    MATH  Google Scholar 

  24. Chen H K, Lee C I. Anti-control of chaos in rigid body motion. Chaos Solitons Fractals, 2004, 21: 957–965

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen G R, Yu X H. Chaos Control: Theory and Applications. New York: Springer-Verlag, 2003. 184–192

    Book  Google Scholar 

  26. Wu Y, Zhou Y, Bao L. Discrete wheel-switching chaotic system and applications. IEEE Trans Circuits Syst I, 2014, 61: 3469–3477

    Article  Google Scholar 

  27. Zeraoulia E, Sprott J C. Robust Chaos and Its Applications. Singapore: World Scientific, 2012

    MATH  Google Scholar 

  28. Zhang R X, Yang S P. Robust chaos synchronization of fractional-order chaotic systems with unknown parameters and uncertain perturbations. Nonlinear Dyn, 2012, 69: 983–992

    Article  MathSciNet  MATH  Google Scholar 

  29. Lazzús J A, Rivera M, López-Caraballo C H. Parameter estimation of lorenz chaotic system using a hybrid swarm intelligence algorithm. Phys Lett A, 2016, 380: 1164–1171

    Article  MathSciNet  Google Scholar 

  30. Chen Z, Yuan X, Yuan Y, et al. Parameter identification of chaotic and hyper-chaotic systems using synchronization-based parameter observer. IEEE Trans Circuits Syst I, 2016, 63: 1464–1475

    Article  MathSciNet  Google Scholar 

  31. Liu M Q, Zhang S L, Fan Z, et al. Exponential H∞ synchronization and state estimation for chaotic systems via a unified model. IEEE Trans Neural Netw Learning Syst, 2013, 24: 1114–1126

    Article  Google Scholar 

  32. Gao T G, Chen Z Q. A new image encryption algorithm based on hyper-chaos. Phys Lett A, 2008, 372: 394–400

    Article  MATH  Google Scholar 

  33. Kaddoum G, Soujeri E, Nijsure Y. Design of a short reference noncoherent chaos-based communication systems. IEEE Trans Commun, 2016, 64: 680–689

    Article  Google Scholar 

  34. Zhou Y C, Bao L, Chen C L P. A new 1D chaotic system for image encryption. Signal Process, 2014, 97: 172–182

    Article  Google Scholar 

  35. Hua Z Y, Zhou B H, Zhou Y C. Sine-transform-based chaotic system with FPGA implementation. IEEE Trans Ind Electron, 2018, 65: 2557–2566

    Article  Google Scholar 

  36. Deng Y H, Hu H P, Xiong W, et al. Analysis and design of digital chaotic systems with desirable performance via feedback control. IEEE Trans Syst Man Cybern Syst, 2015, 45: 1187–1200

    Article  Google Scholar 

  37. Wang Y W, Guan Z H. Generalized synchronization of continuous chaotic system. Chaos Solitons Fractals, 2006, 27: 97–101

    Article  MATH  Google Scholar 

  38. Lu J A, Wu X Q, Lü J H. A new discrete chaotic system with rational fraction and its dynamical behaviors. Chaos Solitons Fractals, 2004, 22: 311–319

    Article  MathSciNet  MATH  Google Scholar 

  39. Wolf A, Swift J B, Swinney H L, et al. Determining Lyapunov exponents from a time series. Physica D, 1985, 16: 285–317

    Article  MathSciNet  MATH  Google Scholar 

  40. Li S J, Mou X Q, Cai Y L, et al. On the security of a chaotic encryption scheme: problems with computerized chaos in finite computing precision. Computer Phys Commun, 2003, 153: 52–58

    Article  MathSciNet  MATH  Google Scholar 

  41. Alligood K T, Sauer T D, Yorke J A. Chaos: An Introduction to Dynamical Systems. New York: Springer-Verlag, 2000. 25

    MATH  Google Scholar 

  42. Ćosić B R. Lyapunov exponents of the predator prey model. Dissertation for Doctoral Degree. Ostrava: Technical University of Ostrava, 2013

    Google Scholar 

  43. Chen M, Qi J W, Wu F G, et al. Bifurcation analyses and hardware experiments for bursting dynamics in non-autonomous memristive FitzHugh-Nagumo circuit. Sci China Tech Sci, 2020, 63: 1035–1044

    Article  Google Scholar 

  44. Xu C J, Liao M X, Li P L. Bifurcation control of a fractional-order delayed competition and cooperation model of two enterprises. Sci China Tech Sci, 2019, 62: 2130–2143

    Article  Google Scholar 

  45. Huang C D, Cao J D. Comparative study on bifurcation control methods in a fractional-order delayed predator-prey system. Sci China Tech Sci, 2019, 62: 298–307

    Article  Google Scholar 

  46. Srinivas J, Das A K, Wazid M, et al. Anonymous lightweight chaotic map-based authenticated key agreement protocol for industrial internet of things. IEEE Trans Dependable Secure Comput, 2020, 17: 1133–1146

    Article  Google Scholar 

  47. Dewangan P D, Singh V P, Sinha S L. Improved approximation for SISO and MIMO continuous interval systems ensuring stability. Circuits Syst Signal Process, 2020, 39: 4705–4716

    Article  Google Scholar 

  48. Padhy A P, Singh V, Singh V P. Model order reduction of discrete time uncertain system. J Inf Optim Sci, 2020, 41: 661–668

    Google Scholar 

  49. Flores-Vergara A, García-Guerrero E E, Inzunza-González E, et al. Implementing a chaotic cryptosystem in a 64-bit embedded system by using multiple-precision arithmetic. Nonlinear Dyn, 2019, 96: 497–516

    Article  MATH  Google Scholar 

  50. Tlelo-Cuautle E, Pano-Azucena A D, Guill O, et al. Analog/Digital Implementation of Fractional Order Chaotic Circuits and Applications. Cham: Springer, 2020. 115–173

    Book  Google Scholar 

  51. Sayed W S, Radwan A G, Elnawawy M, et al. Two-dimensional rotation of chaotic attractors: Demonstrative examples and FPGA realization. Circuits Syst Signal Process, 2019, 38: 4890–4903

    Article  Google Scholar 

  52. Orabi H, Elnawawy M, Sagahyroon A, et al. On the implementation of a rotated chaotic Lorenz system on FPGA. In: Proceedings of the 2019 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). Bangkok City, 2019. 417–422

  53. Bassham L E, Rukhin A, Soto J, et al. A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical Report. Gaithersburg: National Institute of Standards & Technology, 2010

    Book  Google Scholar 

  54. Richman J S, Moorman J R. Physiological time-series analysis using approximate entropy and sample entropy. Am J Phys-Heart Circul Phys, 2000, 278: H2039–H2049

    Google Scholar 

  55. Spiclin Ž, Likar B, Pernus F. Groupwise registration of multimodal images by an efficient joint entropy minimization scheme. IEEE Trans Image Process, 2012, 21: 2546–2558

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhongYun Hua.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 62071142), and the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (Grant No. HIT.NSRIF.2020077).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, Z., Zhou, B., Zhang, Y. et al. Modular chaotification model with FPGA implementation. Sci. China Technol. Sci. 64, 1472–1484 (2021). https://doi.org/10.1007/s11431-020-1717-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-020-1717-1

Keywords

Navigation