Skip to main content
Log in

Dynamics of a memristive FitzHugh–Rinzel neuron model: application to information patterns

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, a memristive FitzHugh–Rinzel (mFHR) neuron prototype is introduced and investigated. The memristive device is exploited to simulate the impact of a magnetic radiation on the FitzHugh–Rinzel (FHR) neuron’s behavior. Depending on the strength of the electromagnetic induction and the intensity of the external stimulus, it is found that the model experiences self-excited firing activity. The two-parameter charts of the largest Lyapunov exponent and the bifurcation diagram investigation revealed the model exhibited hysteretic dynamics, which induced the coexistence of bifurcation of sets of parameters not yet revealed in such a model. The energy necessary to provide each firing activity in the proposed model is also estimated based on the Helmholtz theorem. Finally, results of the information patterns with a chain of 100 mFHR neurons are obtained by numerical calculations using Runge–Kutta (fourth-order) calculation method, which approaches solutions of the resulting dynamic equations. The spatiotemporal patterns and time series plots for membrane potential revealed regular localized structures made of alternate bright and dark bands identified as spikes, which are sensitive to external stimulation current, electromagnetic induction coefficients and synaptic coupling strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data used to support the findings of this study are available from the corresponding author upon request.]

References

  1. S. Binczak, S. Jacquir, J.-M. Bilbault, V.B. Kazantsev, V.I. Nekorkin, Experimental study of electrical FitzHugh–Nagumo neurons with modified excitability. Neural Netw. 19, 684–93 (2006)

    Article  MATH  Google Scholar 

  2. H. Gu, B. Pan, G. Chen, L. Duan, Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models. Nonlinear Dyn. 78, 391–407 (2014)

    Article  MathSciNet  Google Scholar 

  3. L. Fortuna, A. Buscarino, Spiking neuron mathematical models: a compact overview. Bioengineering 10, 174 (2023)

    Article  Google Scholar 

  4. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500 (1952)

    Article  Google Scholar 

  5. A.L. Hodgkin, A.F. Huxley, Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. physiol. 116, 449 (1952)

    Article  Google Scholar 

  6. K.E. Petousakis, A.A. Apostolopoulou, P. Poirazi, The impact of Hodgkin–Huxley models on dendritic research. J. Physiol. (2022). https://doi.org/10.1113/JP282756

    Article  Google Scholar 

  7. L. Chua, Hodgkin–Huxley equations implies edge of chaos kernel. Japn J Appl Phys 61(SM), SM0805 (2022)

    Article  Google Scholar 

  8. J.A. Rinzel, Formal Classification of Bursting Mechanisms in Excitable Systems. Mathematical Topics in Population Biology, Morphogenesis and Neurosciences (Springer, 1987), pp.267–81

    Google Scholar 

  9. V. Belykh, E. Pankratova, Chaotic synchronization in ensembles of coupled neurons modeled by the FitzHugh–Rinzel system. Radiophys. Quantum Electron. 49, 910–21 (2006)

    Article  ADS  Google Scholar 

  10. A.I. Zemlyanukhin, A.V. Bochkarev, Analytical properties and solutions of the FitzHugh Rinzel model. Russ. J. Nonlinear Dyn. 15, 3–12 (2019)

    MathSciNet  MATH  Google Scholar 

  11. M. De Angelis, A priori estimates for solutions of FitzHugh–Rinzel system. Meccanica 57, 1035–45 (2022)

    Article  MathSciNet  Google Scholar 

  12. A. Mondal, A. Mondal, S.S. Kumar, U.R. Kumar, C.G. Antonopoulos, Spatiotemporal characteristics in systems of diffusively coupled excitable slow-fast FitzHugh–Rinzel dynamical neurons. Chaos: Interdiscip. J. Nonlinear Scie. 31, 103122 (2021)

    Article  MathSciNet  Google Scholar 

  13. S. Rionero, Longtime behaviour and bursting frequency, via a simple formula, of FitzHugh–Rinzel neurons. Rendiconti Lincei Scienze Fisiche e Naturali 32, 857–67 (2021)

    Article  ADS  Google Scholar 

  14. J. Sun, C. Li, Z. Wang, Y. Wang, Dynamic analysis of HR-FN-HR neural network coupled by locally active hyperbolic memristors and encryption application based on Knuth–Durstenfeld algorithm. Appl Math Model 121, 463–483 (2023)

    Article  MathSciNet  Google Scholar 

  15. A. Moujahid, A. d’Anjou, F. Torrealdea, F. Torrealdea, Energy and information in Hodgkin–Huxley neurons. Phys. Rev. E 83, 031912 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  16. G. Sun, F. Yang, G. Ren, C. Wang, Energy encoding in a biophysical neuron and adaptive energy balance under field coupling. Chaos Solitons Fract. 169, 113230 (2023)

    Article  MathSciNet  Google Scholar 

  17. L. Lu, Y. Jia, Y. Xu, M. Ge, L. Yang, X. Zhan, Energy dependence on modes of electric activities of neuron driven by different external mixed signals under electromagnetic induction. Sci. China Technol. Sci. 62, 427–40 (2019)

    Article  ADS  Google Scholar 

  18. F. Li, C. Yao, The infinite-scroll attractor and energy transition in chaotic circuit. Nonlinear Dyn. 84, 2305–15 (2016)

    Article  MathSciNet  Google Scholar 

  19. S. Panahi, Z. Aram, S. Jafari, J. Ma, J. Sprott, Modeling of epilepsy based on chaotic artificial neural network. Chaos Solitons Fract. 105, 150–6 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. W.J. Freeman, Strange attractors that govern mammalian brain dynamics shown by trajectories of electroencephalographic (EEG) potential. IEEE Trans. Circuits Syst. 35, 781–3 (1988)

    Article  MathSciNet  Google Scholar 

  21. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Determining Lyapunov exponents from a time series. Phys. D: Nonlinear Phenom. 16, 285–317 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. F. Wu, H. Gu, Bifurcations of negative responses to positive feedback current mediated by memristor in a neuron model with bursting patterns. Int. J. Bifurc. Chaos 30, 2030009 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Lin, C. Wang, Q. Deng, C. Xu, Z. Deng, C. Zhou, Review on chaotic dynamics of memristive neuron and neural network. Nonlinear Dyn. 106, 959–73 (2021)

    Article  Google Scholar 

  24. X. Yu, H. Bao, M. Chen, B. Bao, Energy balance via memristor synapse in Morris–Lecar two-neuron network with FPGA implementation. Chaos Solitons Fract. 171, 113442 (2023)

    Article  MathSciNet  Google Scholar 

  25. F. Wu, X. Hu, J. Ma, Estimation of the effect of magnetic field on a memristive neuron. Appl. Math. Comput. 432, 127366 (2022)

    MathSciNet  MATH  Google Scholar 

  26. P. Zhou, Y. Xu, J. Ma, Dynamical and coherence resonance in a photoelectric neuron under autaptic regulation. Phys. A: Stat. Mech. Appl. 620, 128746 (2023)

    Article  Google Scholar 

  27. Y. Xie, Z. Yao, J. Ma, Phase synchronization and energy balance between neurons. Front. Inf. Technol. Electron. Eng. 23, 1407–20 (2022)

    Article  Google Scholar 

  28. C.C. Felicio, P.C. Rech, Arnold tongues and the Devil’s Staircase in a discrete-time Hindmarsh–Rose neuron model. Phys. Lett. A. 379, 2845–7 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. H. Tanaka, Design of bursting in a two-dimensional discrete-time neuron model. Phys. Lett. A. 350, 228–31 (2006)

    Article  ADS  Google Scholar 

  30. M. MingLin, X. XiaoHua, Y. Yang, L. ZhiJun, S. YiChuang, Synchronization coexistence in a Rulkov neural network based on locally active discrete memristor. Chin. Phys. B. 32(5), 058701 (2023)

    Article  ADS  Google Scholar 

  31. B. Linares-Barranco, E. Sánchez-Sinencio, Á. Rodríguez-Vazquez, J.L. Huertas, A CMOS implementation of FitzHugh–Nagumo neuron model. IEEE J. Solid-State Circuits 26, 956–65 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is funded by the Center for Nonlinear Systems, Chennai Institute of Technology, India, vide funding number CIT/CNS/2023/RP/009. Jan Awrejcewicz has been supported by the Polish National Science Centre under the Grant OPUS 18No.2019/35/B/ST8/00980.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeric Tabekoueng Njitacke.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Njitacke, Z.T., Parthasarathy, S., Takembo, C.N. et al. Dynamics of a memristive FitzHugh–Rinzel neuron model: application to information patterns. Eur. Phys. J. Plus 138, 473 (2023). https://doi.org/10.1140/epjp/s13360-023-04120-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04120-z

Navigation