Skip to main content
Log in

Thermodynamic analyses and optimization for thermoelectric devices: The state of the arts

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Thermoelectric effect is the most efficient way to convert electric energy directly from the temperature gradient. Thermoelectric effect-based power generation, cooling and heating devices are solid-stated, environmentally friendly, reliable, long-lived, easily maintainable, and easy to achieve miniaturization and integration. So they have unparalleled advantages in the aerospace, vehicle industry, waste heat recovery, electronic cooling, etc. This paper reviews the progress in thermodynamic analyses and optimizations for single- and multiple-element, single- and multiple-stage, and combined thermoelectric generators, thermoelectric refrigerators and thermoelectric heat pumps, especially in the aspects of non-equilibrium thermodynamics and finite time thermodynamics. It also discusses the developing trends of thermoelectric devices, such as the heat sources of thermoelectric generators, multi-stage thermoelectric devices, combined thermoelectric devices, and heat transfer enhancement of thermoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Di Salvo F J. Thermoelectric cooling and power generation. Science, 1999, 285: 703–706

    Article  Google Scholar 

  2. Riffat S B, Ma X. Thermoelectrics: A review of present and potential applications. Appl Therm Eng, 2003, 23: 913–935

    Article  Google Scholar 

  3. Thomas J P, Qidwai M A, Kellogg J C. Energy scavenging for small-scale unmanned systems. J Power Sources, 2006, 159: 1494–1509

    Article  Google Scholar 

  4. Riffat S B, Qiu G. Comparative investigation of thermoelectric airconditioners versus vapour compression and absorption air-conditioners. Appl Therm Eng, 2004, 24: 1979–1993

    Article  Google Scholar 

  5. Atik K. Thermoeconomic Optimization in the Design of Thermoelectric Cooler. Turkiye: Karabuk, 2009

    Google Scholar 

  6. Brown D R, Fernandez N, Dirks J A, et al. The prospects of alternatives to vapor compression technology for space cooling and food refrigeration applications. U.S. Department of Energy, 2010

    Book  Google Scholar 

  7. Heremans J P, Jovovic V, Toberer E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008, 321: 554–557

    Article  Google Scholar 

  8. Nolas G S, Sharp J, Goldsmid H J. Thermoelectrics: Basic Principles and New Material Developments. Berlin: Springer, 2001

    Book  MATH  Google Scholar 

  9. Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321: 1457–1461

    Article  Google Scholar 

  10. Riffat S B, Ma X. Improving the coefficient of performance of thermoelectric cooling systems: a review. Int J Energ Res, 2004, 28: 753–768

    Article  Google Scholar 

  11. Wisniewski S, Staniszewski B, Szymanik R. Thermodynamics of Nonequilibrium Processes. California: D. Reidel Pub. Co, 1976

    MATH  Google Scholar 

  12. Bejan A. Advanced Engineering Thermodynamics. New York: Wiley, 1988

    Google Scholar 

  13. Andresen B. Recent Advances in Thermodynamics Research Including Non-Equilibrium Thermodynamics. Nagpur: Nagpur University, 2008

    Google Scholar 

  14. Curzon F L, Ahlborn B. Efficiency of a Carnot engine at maximum power output. American J Phys, 1975, 43: 22–24

    Article  Google Scholar 

  15. Andresen B. Finite-Time Thermodynamics. Copenhagen: Physics Laboratory II, University of Copenhagen, 1983

    Google Scholar 

  16. Bejan A. Entropy Generation Minimization. Boca Raton FL: CRC Press, 1996

    MATH  Google Scholar 

  17. Berry R S, Kazakov V A, Sieniutycz S, et al. Thermodynamic Optimization of Finite Time Processes. Chichester: Wiley, 1999

    Google Scholar 

  18. Chen L G, Sun F R. Advances in Finite Time Thermodynamics: Analysis and Optimization. New York: Nova Science Publishers, 2004

    Google Scholar 

  19. De Vos A. Thermodynamics of Solar Energy Conversion. Berlin: Wiley, 2008

    Google Scholar 

  20. Sieniutycz S, Jezowski J. Energy Optimization in Process Systems. Oxford: Elsevier, 2009

    Google Scholar 

  21. Andresen B. Current trends in finite-time thermodynamics. Angew Chem Int Edition, 2011, 50: 2690–2704

    Article  Google Scholar 

  22. Feidt M. Thermodynamics of energy systems and processes: A review and perspectives. J Appl Fluid Mech, 2012, 5: 85–98

    Google Scholar 

  23. Wang J, He J Z, Mao Z. Performance of a quantum heat engine cycle working with harmonic oscillator systems. Sci China Ser G-Phys Mech Astron, 2007, 50: 163–176

    Article  MATH  Google Scholar 

  24. Song H J, Chen L G, Sun F R. Optimal configuration of a class of endoreversible heat engines for maximum efficiency with radiative heat transfer law. Sci China Ser G-Phys Mech Astron, 2008, 51: 1272–1286

    Article  MATH  Google Scholar 

  25. Xia D, Chen L G, Sun F R. Optimal performance of a generalized irreversible four-reservoir isothermal chemical potential transformer. Sci China Ser B-Chem, 2008, 51: 958–970

    Article  Google Scholar 

  26. Li J, Chen L G, Sun F R. Optimal configuration for a finite hightemperature source heat engine cycle with complex heat transfer law. Sci China Ser G-Phys Mech Astron, 2009, 52: 587–592

    Article  Google Scholar 

  27. Xia S J, Chen L G, Sun F R. Optimal path of piston motion for Otto cycle with linear phenomenological heat transfer law. Sci China Ser G-Phys Mech Astron, 2009, 52: 708–719

    Article  Google Scholar 

  28. Xia S J, Chen L G, Sun F R. Maximum power output of a class of irreversible non-regeneration heat engines with a non-uniform working fluid and linear phenomenological heat transfer law. Sci China Ser G-Phys Mech Astron, 2009, 52: 1961–1970

    Article  Google Scholar 

  29. He J Z, He X, Tang W. The performance characteristics of an irreversible quantum Otto harmonic cycles. Sci China Ser G-Phys Mech Astron, 2009, 52: 1317–1323

    Article  Google Scholar 

  30. Liu X W, Chen L G, Wu F, et al. Ecological optimization of an irreversible harmonic oscillators Carnot heat engine. Sci China Ser G-Phys Mech Astron, 2009, 52: 1976–1988

    Article  Google Scholar 

  31. Ding Z M, Chen L G, Sun F R. Thermodynamic characteristic of a Brownian heat pump in a spatially periodic temperature field. Sci China-Phys Mech Astron, 2010, 53: 876–885

    Article  Google Scholar 

  32. Ge Y L, Chen L G, Sun F R. Optimal paths of piston motion of irreversible Otto cycle heat engines for minimum entropy generation (in Chinese). Sci Sin-Phys Mech Astron, 2010, 40: 1115–1129

    Google Scholar 

  33. Ding Z M, Chen L G, Sun F R. Modeling and performance analysis of energy selective electron (ESE) engine with heat leakage and transmission probability. Sci China-Phys Mech Astron, 2011, 54: 1925–1936

    Article  MathSciNet  Google Scholar 

  34. Shu L W, Chen L G, Sun F R. The minimal average heat consumption for heat-driven binary separation process with linear phenomenological heat transfer law. Sci China Ser-B Chem, 2009, 52: 1154–1163

    Article  Google Scholar 

  35. Ma K, Chen L G, Sun F R. Optimal paths for a light-driven engine with linear phenomenological heat transfer law. Sci China Chem, 2010, 53: 917–926

    Article  Google Scholar 

  36. Xia S J, Chen L G, Sun F R. Hamilton-Jacobi-Bellman equations and dynamic programming for power-optimization of multistage heat engine system with generalized convective heat transfer law. Chin Sci Bull, 2011, 56: 1147–1157

    Article  Google Scholar 

  37. Yamashita O, Odahara H, Satou K. Energy conversion efficiency of a thermoelectric generator under the periodically alternating temperature gradients. J Appl Phys, 2007, 101: 23704–23708

    Article  Google Scholar 

  38. Yamashita O. Effect of linear temperature dependence of thermoelectric properties on energy conversion efficiency. Energ Convers Manage, 2008, 49: 3163–3169

    Article  Google Scholar 

  39. Yamashita O. Resultant Seebeck coefficient formulated by combining the Thomson effect with the intrinsic Seebeck coefficient of a thermoelectric element. Energ Convers Manage, 2009, 50: 2394–2399

    Article  Google Scholar 

  40. Yamashita O. Effect of linear and non-linear components in the temperature dependences of thermoelectric properties on the energy conversion efficiency. Energ Convers Manage, 2009, 50: 1968–1975

    Article  Google Scholar 

  41. D’Angelo J J. Low Resistance Contacts to Thermoelectric Materials. Michigan: Michigan State University, 2006

    Google Scholar 

  42. McCarty R G. Thermal switching to improve time-averaged efficiency of thermoelectric energy harvesting. Dissertation of Doctor Degree. Ohio: University of Dayton, 2007

    Google Scholar 

  43. Meng F K. Finite time thermodynamic analyses and optimizations for a variety of thermoelectric devices. Dissertation of Doctor Degree. Wuhan: Naval University of Engineering, 2011

    Google Scholar 

  44. Gordon J M. Generalized power versus efficiency characteristics of heat engines: The thermoelectric generator as an instructive illustration. Am J Phys, 1991, 59: 551–555

    Article  Google Scholar 

  45. Gordon J M. A response to Yan and Chen’s “Comment on ‘Generalized power versus efficiency characteristics of heat engines: The thermoelectric generator as an instructive illustration”’. Am J Phys, 1993, 61: 381

    Article  Google Scholar 

  46. Yan Z, Chen J. Comment on “Generalized power versus efficiency characteristics of heat engines: The thermoelectric generator as an instructive illustration,” by J. M. Gordon. American J Phys, 1993, 61: 380

    Article  Google Scholar 

  47. Esarte J, Min G, Rowe D M. Modelling heat exchangers for thermoelectric generators. J Power Sources, 2001, 93: 72–76

    Article  Google Scholar 

  48. Nuwayhid R Y, Moukalled F, Noueihed N. On entropy generation in thermoelectric devices. Energ Convers Manage, 2000, 41: 891–914

    Article  Google Scholar 

  49. Chen L G, Gong J Z, Sun F R, et al. Effect of heat transfer on the performance of thermoelectric generators. Int J Therm Sci, 2002, 41: 95–99

    Article  Google Scholar 

  50. Chen L G, Sun F R, Wu C. Heat transfer surface area optimization for a thermoelectric generator. Int J Ambient Energ, 2007, 28: 135–142

    Article  Google Scholar 

  51. Chen L G, Sun F R, Wu C. Thermoelectric-generator with linear phenomenological heat-transfer law. Appl Energ, 2005, 81: 358–364

    Article  Google Scholar 

  52. Yilbas B S, Sahin A Z. Thermoelectric device and optimum external load parameter and slenderness ratio. Energy, 2010, 35: 5380–5384.

    Article  Google Scholar 

  53. Meng F K, Chen L G, Sun F R. Performance characteristics of the multielement thermoelectric generator with radiative heat transfer law. Int J Sustain Energ, 2011, 31: 119–131

    Article  Google Scholar 

  54. Rodriguez A, Vin J G, Astrain D, et al. Study of thermoelectric systems applied to electric power generation. Energ Convers Manage, 2009, 50: 1236–1243

    Article  Google Scholar 

  55. Xuan X C. Investigation of thermal contact effect on thermoelectric coolers. Energ Convers Manage, 2003, 44: 399–410

    Article  Google Scholar 

  56. Yamashita O. Effect of temperature dependence of electrical resistivity on the cooling performance of a single thermoelectric element. Appl Energ, 2008, 85: 1002–1014

    Article  Google Scholar 

  57. Yamashita O. Effect of linear and non-linear components in the temperature dependences of thermoelectric properties on the cooling performance. Appl Energ, 2009, 86: 1746–1756

    Article  Google Scholar 

  58. Huang B J, Chin C J, Duang C L. A design method of thermoelectric cooler. Int J Refrig, 2000, 23: 208–218

    Article  Google Scholar 

  59. Huang B J, Duang C L. System dynamic model and temperature control of a thermoelectric cooler. Int J Refrig, 2000, 23: 197–207

    Article  Google Scholar 

  60. Xuan X C, Ng K C, Yap C, et al. Optimization and thermodynamic understanding of conduction-cooled Peltier current leads. Cryogenics, 2002, 42: 141–145

    Article  Google Scholar 

  61. Yang R, Chen G, Kumar A R, et al. Transient cooling of thermoelectric coolers and its applications for microdevices. Energ Convers Manage, 2005, 46: 1407–1421

    Article  Google Scholar 

  62. Cheng Y, Lin W. Geometric optimization of thermoelectric coolers in a confined volume using genetic algorithms. Appl Therm Eng, 2005, 25: 2983–2997

    Article  Google Scholar 

  63. Tan F L, Fok S C. Methodology on sizing and selecting thermoelectric cooler from different TEC manufacturers in cooling system design. Energ Convers Manage, 2008, 49: 1715–1723

    Article  Google Scholar 

  64. Tan F L, Fok S C. Development of a multi-vendor software to size and select TEC. Appl Therm Eng, 2008, 28: 835–846

    Article  Google Scholar 

  65. Huang M, Yen R, Wang A. The influence of the Thomson effect on the performance of a thermoelectric cooler. Int J Heat Mass Transfer, 2005, 48: 413–418

    Article  MATH  Google Scholar 

  66. Vikhor L N, Anatychuk L I. Theoretical evaluation of maximum temperature difference in segmented thermoelectric coolers. Appl Therm Eng, 2006, 26: 1692–1696

    Article  Google Scholar 

  67. Gutierrez F, Mendez F. Entropy generation minimization of a thermoelectric cooler. Open Thermodyn J, 2008, 2: 71–81

    Article  Google Scholar 

  68. Chen L G, Gong J Z, Shen L G, et al. Theoretical analysis and experimental confirmation for the performance of thermoelectric refrigerator. J Non-Equil Thermody, 2001, 26: 85–92

    Google Scholar 

  69. Xuan X C. Optimum design of a thermoelectric device. Semic Sci Tech, 2002, 17: 114–119

    Article  Google Scholar 

  70. Luo J, Chen L G, Sun F R, et al. Optimum allocation of heat transfer surface area for cooling load and COP optimization of a thermoelectric refrigerator. Energ Convers Manage, 2003, 44: 3197–3206

    Article  Google Scholar 

  71. Riffat S B, Qiu G Q. Design and characterization of a cylindrical, water-cooled heat sink for thermoelectric air-conditioners. Int J Energ Res, 2006, 30: 67–80

    Article  Google Scholar 

  72. Chen L G, Li J, Sun F R, et al. Optimum allocation of heat transfer surface area for heating load and COP optimisation of a thermoelectric heat pump. Int J Ambient Energ, 2007, 28: 189–196

    Article  Google Scholar 

  73. Riffat S B, Ma X. Optimum selection (design) of thermoelectric modules for large capacity heat pump applications. Int J Energ Res, 2004, 28: 1231–1242

    Article  Google Scholar 

  74. Riffat S B, Ma X, Qiu G. Experimentation of a novel thermoelectric heat pump system. Int J Ambient Energ, 2004, 25: 177–186

    Article  Google Scholar 

  75. Riffat S B, Ma X, Wilson R. Performance simulation and experimental testing of a novel thermoelectric heat pump system. Appl Therm Eng, 2006, 26: 494–501

    Article  Google Scholar 

  76. Junior C, Chen G, Koehler J. Modeling of a new recuperative thermoelectric cycle for a tumble dryer. Int J Heat Mass Trans, 2012, 55: 1536–1543

    Article  Google Scholar 

  77. Yu J, Zhao H. A numerical model for thermoelectric generator with the parallel-plate heat exchanger. J Power Sources, 2007, 172: 428–434

    Article  Google Scholar 

  78. Niu X, Yu J, Wang S. Experimental study on low-temperature waste heat thermoelectric generator. J Power Sources, 2009, 188: 621–626

    Article  Google Scholar 

  79. Chen M, Rosendahl L A, Condra T. A three-dimensional numerical model of thermoelectric generators in fluid power systems. Int J Heat Mass Transfer, 2011, 54: 345–355

    Article  MATH  Google Scholar 

  80. Meng F K, Chen L G, Sun F R. A numerical model and comparative investigation of a thermoelectric generator with multi-irreversibilities. Energy, 2011, 26: 3513–3522

    Article  Google Scholar 

  81. Suter C, Tomeš P, Weidenkaff A, et al. A solar cavity-receiver packed with an array of thermoelectric converter modules. Sol Energy, 2011, 85: 1511–1518

    Article  Google Scholar 

  82. Naito H, Kohsaka Y, Cooke D, et al. Development of a solar receiver for a high-efficiency thermionic-thermoelectric conversion system. Sol Energy, 1996, 58: 191–195

    Article  Google Scholar 

  83. Singh R, Tundee S, Akbarzadeh A. Electric power generation from solar pond using combined thermosyphon and thermoelectric modules. Sol Energy, 2011, 85: 371–378

    Article  Google Scholar 

  84. El-Genk M S, Saber H H. Performance analysis of cascaded thermoelectric converters for advanced radioisotope power systems. Energ Convers Manage, 2005, 46: 1083–1105

    Article  Google Scholar 

  85. Brien R C O, Ambrosi R M, Bannister N P, et al. Safe radioisotope thermoelectric generators and heat sources for space applications. J Nucl Mater, 2008, 377: 506–521

    Article  Google Scholar 

  86. Whalen S A, Apblett C A, Aselage T L. Improving power density and efficiency of miniature radioisotopic thermoelectric generators. J Power Sources, 2008, 180: 657–663

    Article  Google Scholar 

  87. Qiu K, Hayden A C S. Development of a thermoelectric self-powered residential heating system. J Power Sources, 2008, 180: 884–889

    Article  Google Scholar 

  88. Crane D T, Bell L E. Design to maximize performance of a thermoelectric power generator with a dynamic thermal power source. T ASME J Energ Res Tech, 2009, 131: 12401–12408

    Article  Google Scholar 

  89. Behrens D A, Lee I C, Waits C M. Catalytic combustion of alcohols for microburner applications. J Power Sources, 2010, 326: 11–26

    Google Scholar 

  90. Champier D, Bdcarrats J P, Kousksou T, et al. Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove. Energy, 2011, 36: 1518–1526

    Article  Google Scholar 

  91. Jiang L Q, Zhao D Q, Guo C M, et al. Experimental study of a plat-flame micro combustor burning DME for thermoelectric power generation. Energ Convers Manage, 2011, 52: 596–602

    Article  Google Scholar 

  92. Wang F, Zhou J, Wang G, et al. Simulation on thermoelectric device with hydrogen catalytic combustion. Int J Hydrogen Energ, 2012, 37: 884–888

    Article  Google Scholar 

  93. Sivapurapu S V K. Preliminary Design of a Cryogenic Thermoelectric Generator. University of North Texas: North Texas, 2007

    Google Scholar 

  94. Sun W, Hu P, Chen Z, et al. Performance of cryogenic thermoelectric generators in cold energy utilization. Energ Convers Manage, 2005, 46: 789–796

    Article  Google Scholar 

  95. Hartsig A T. Thermoelectric conversion of waste heat to electricity in an IC engine powered vehicle: An engine modeling approach. Michigan: Michigan State University, 2008

    Google Scholar 

  96. Yu C, Chau K T. Thermoelectric automotive waste heat energy recovery using maximum power point tracking. Energ Convers Manage, 2009, 50: 1506–1512

    Article  Google Scholar 

  97. Hsiao Y Y, Chang W C, Chen S L. A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine. Energy, 2010, 35: 1447–1454

    Article  Google Scholar 

  98. Hsu C, Huang G, Chu H, et al. Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators. Appl Energ, 2011, 88: 1291–1297

    Article  Google Scholar 

  99. Astrain D, Vián J G, Martinez A, et al. Study of the influence of heat exchangers’ thermal resistances on a thermoelectric generation system. Energy, 2010, 35: 602–610

    Article  Google Scholar 

  100. Chen M, Lund H, Rosendahl L A, et al. Energy efficiency analysis and impact evaluation of the application of thermoelectric power cycle to today’s CHP systems. Appl Energ, 2010, 87: 1231–1238

    Article  Google Scholar 

  101. Gou X, Xiao H, Yang S. Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system. Appl Energ, 2010, 87: 3131–3136

    Article  Google Scholar 

  102. Meng F K, Chen L G, Sun F R. Thermoelectric power generation driven by blast furnace slag flushing water. Energy, 2014, 66: 965–972

    Article  Google Scholar 

  103. Chen L G, Li J, Sun F R, et al. Performance optimization of a two-stage semiconductor thermoelectric-generator. Appl Energ, 2005, 82: 300–312

    Article  Google Scholar 

  104. Meng F K, Chen L G, Sun F R. Performance characteristics analysis and optimization of multistage combined thermoelectric generators (in Chinese). J Therm Sci Tech, 2010, 9: 317–325.

    Google Scholar 

  105. Suzuki R O, Tanaka D. Mathematic simulation on thermoelectric power generation with cylindrical multi-tubes. J Power Sources, 2003, 122: 201–209

    Article  Google Scholar 

  106. Suzuki R O, Tanaka D. Mathematical simulation of thermoelectric power generation with the multi-panels. J Power Sources, 2003, 124: 293–298

    Article  Google Scholar 

  107. Suzuki R O. Mathematic simulation on power generation by roll cake type of thermoelectric double cylinders. J Power Sources, 2004, 124: 293–298

    Article  Google Scholar 

  108. Suzuki R O, Tanaka D. Mathematic simulation on power generation by roll cake type of thermoelectric tubes. J Power Sources, 2004, 133: 277–285

    Article  Google Scholar 

  109. Xiong B, Chen L G, Meng F K, et al. Modeling and performance analysis of a two-stage thermoelectric energy harvesting system from blast furnace slag water waste heat. Energy, 2014, 77: 562–569

    Article  Google Scholar 

  110. Xuan X C, Ng K C, Yap C, et al. Optimization of two-stage thermoelectric coolers with two design configurations. Energ Convers Manage, 2002, 43: 2041–2052

    Article  Google Scholar 

  111. Xuan X C, Ng K C, Yap C, et al. The maximum temperature difference and polar characteristic of two-stage thermoelectric coolers. Cryogenics, 2002, 42: 273–278

    Article  Google Scholar 

  112. Cheng Y, Shih C. Maximizing the cooling capacity and cop of twostage thermoelectric coolers through genetic algorithm. Appl Therm Eng, 2006, 26: 937–947

    Article  Google Scholar 

  113. Chen L G, Li J, Sun F R, et al. Effect of heat transfer on the performance of two-stage semiconductor thermoelectric refrigerators. J Appl Phys, 2005, 98: 34507

    Article  Google Scholar 

  114. Chen L G, Li J, Sun F R. Heat transfer effect on optimal performance of two-stage thermoelectric heat pumps. P I Mech Eng C-J Mec, 2007, 221: 1635–1642

    Article  Google Scholar 

  115. Chen L G, Li J, Sun F R, et al. Performance optimization for a twostage thermoelectric heat-pump with internal and external irreversibilities. Appl Energ, 2008, 85: 641–649

    Article  Google Scholar 

  116. Yu J, Zhao H, Xie K. Analysis of optimum configuration of twostage thermoelectric modules. Cryogenics, 2007, 47: 89–93

    Article  Google Scholar 

  117. Li K, Liang R, Wei Z. Analysis of performance and optimum configuration of two-stage semiconductor thermoelectric module. Chin Phys B, 2008; 17: 1349

    Article  Google Scholar 

  118. Yu J, Wang B. Enhancing the maximum coefficient of performance of thermoelectric cooling modules using internally cascaded thermoelectric couples. Int J Refrig, 2009, 32: 32–39

    Article  Google Scholar 

  119. Cheng T, Cheng C, Huang Z, et al. Development of an energysaving module via combination of solar cells and thermoelectric coolers for green building applications. Energy, 2011, 36: 133–140

    Article  Google Scholar 

  120. Dai Y J, Wang R Z, Ni L. Experimental investigation on a thermoelectric refrigerator driven by solar cells. Renew Energ, 2003, 28: 949–959

    Article  Google Scholar 

  121. Abdul-Wahab S A, Elkamel A, Al-Damkhi A M, et al. Design and experimental investigation of portable solar thermoelectric refrigerator. Renew Energ, 2009, 34: 30–34

    Article  Google Scholar 

  122. Xuan X C, Li D. Optimization of a combined thermionic-thermoelectric generator. J Power Sources, 2003, 115: 167–170

    Article  Google Scholar 

  123. Muhtaroglu A, Yokochi A, Von Jouanne A. Integration of thermoelectrics and photovoltaics as auxiliary power sources in mobile computing applications. J Power Sources, 2008, 177: 239–246

    Article  Google Scholar 

  124. Zhang X, Chau K T. An automotive thermoelectric–photovoltaic hybrid energy system using maximum power point tracking. Energ Convers Manage 2011, 52: 641–647

    Article  Google Scholar 

  125. van Sark W G J H M. Feasibility of photovoltaic-thermoelectric hybrid modules. Appl Energ, 2011, 88: 2785–2790

    Article  Google Scholar 

  126. Vián J G, Astrain D. Development of a hybrid refrigerator combining thermoelectric and vapor compression technologies. Appl Therm Eng, 2009, 29: 3319–3327

    Article  Google Scholar 

  127. Khattab N M, Shenawy E T E. Optimal operation of thermoelectric cooler driven by solar thermoelectric generator. Energ Convers Manage, 2006, 47: 407–426

    Article  Google Scholar 

  128. Chen X, Lin B, Chen J. The parametric optimum design of a new combined system of semiconductor thermoelectric devices. Appl Energ, 2006, 83: 681–686

    Article  Google Scholar 

  129. Meng F K, Chen L G, Sun F R. Performance optimization for twostage thermoelectric refrigerator system driven by two-stage thermoelectric generator. Cryogenics, 2009, 49: 57–65

    Article  Google Scholar 

  130. Meng F K, Chen L G, Sun F R. Performance analysis for two-stage TEC system driven by two-stage TEG obeying Newton’s heat transfer law. Math Compu Modell, 2010, 52: 586–595

    Article  MathSciNet  MATH  Google Scholar 

  131. Meng F K, Chen L G, Sun F R. Multivariable optimization of twostage thermoelectric refrigerator driven by two-stage thermoelectric generator with external heat transfer. Indian J Pure Appl Physics, 2010, 48: 731–742

    Google Scholar 

  132. Chen L G, Meng F K, Sun F R. Effect of heat transfer on the performance of thermoelectric generator-driven thermoelectric refrigerator system. Cryogenics, 2012, 52: 58–65

    Article  Google Scholar 

  133. Chen L G, Meng F K, Sun F R. A novel configuration and performance for a two-stage thermoelectric heat pump system driven by a two-stage thermoelectric generator. P I Mech Eng A-J Pow, 2009, 223: 329–339

    Article  Google Scholar 

  134. Chen L G, Meng F K, Sun F R. Effect of heat transfer on the performance of a thermoelectric heat pump driven by a thermoelectric generator. Rev Mex Fis, 2009, 55: 282–291

    Google Scholar 

  135. Yadav A, Pipe K P, Shtein M. Fiber-based flexible thermoelectric power generator. J Power Sources, 2008, 175: 909–913

    Article  Google Scholar 

  136. Huang H S, Weng Y C, Chang Y W, et al. Thermoelectric watercooling device applied to electronic equipment. Int Communic Heat Mass Trans, 2010, 37: 140–146

    Article  Google Scholar 

  137. Meng F K, Chen L G, Sun F R. Performance prediction and irreversibility analysis of a thermoelectric refrigerator with finned heat exchanger. Acta Phys Pol A, 2011, 120: 397–406

    Article  Google Scholar 

  138. Nuwayhid R Y, Shihadeh A, Ghaddar N. Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling. Energ Convers Manage, 2005, 46: 1631–1643

    Article  Google Scholar 

  139. Chang Y, Chang C, Ke M, et al. Thermoelectric air-cooling module for electronic devices. Appl Therm Eng, 2009, 29: 2731–2737

    Article  Google Scholar 

  140. Cosnier M, Fraisse G, Luo L. An experimental and numerical study of a thermoelectric air-cooling and air-heating system. Int J Refrig, 2008, 31: 1051–1062

    Article  Google Scholar 

  141. Zhang H Y, Mui Y C, Tarin M. Analysis of thermoelectric cooler performance for high power electronic packages. Appl Therm Eng, 2010, 30: 561–568

    Article  Google Scholar 

  142. Jie L, Li T, Guo K, He Z. Experimental investigation on a novel method for set point temperature controlling of the active two-phase cooling loop. Int J Refrig, 2008, 31: 1391–1397

    Article  Google Scholar 

  143. He W, Su Y, Riffat S B, et al. Parametrical analysis of the design and performance of a solar heat pipe thermoelectric generator unit. Appl Energ, 2011, 88: 5083–5089

    Article  Google Scholar 

  144. He W, Su Y, Wang Y Q, et al. A study on incorporation of thermoelectric modules with evacuated-tube heat-pipe solar collectors. Renew Energ, 2012, 37: 142–149

    Article  Google Scholar 

  145. Omer S A, Riffat S B, Ma X. Experimental investigation of a thermoelectric refrigeration system employing a phase change material integrated with thermal diode (thermosyphons). Appl Therm Eng, 2001, 21: 1265–1271

    Article  Google Scholar 

  146. Vián J G, Astrain D. Development of a heat exchanger for the cold side of a thermoelectric module. Appl Therm Eng, 2008, 28: 1514–1521

    Article  Google Scholar 

  147. Vián J G, Astrain D. Development of a thermoelectric refrigerator with two-phase thermosyphons and capillary lift. Appl Therm Eng, 2009, 29: 1935–1940

    Article  Google Scholar 

  148. Miljkovic N, Wang E N. Modeling and optimization of hybrid solar thermoelectric systems with thermosyphons. Sol Energ, 2011, 85: 2843–2855

    Article  Google Scholar 

  149. Riffat S B, Omer S A, Ma X. A novel thermoelectric refrigeration system employing heat pipes and a phase change material: an experimental investigation. Renew Energ, 2001, 23: 313–323

    Article  Google Scholar 

  150. Esarte J, Blanco J M, MendCa F, et al. Retracted: improving cooling devices for the hot face of Peltier pellets based on phase change fluids. Appl Therm Eng, 2006, 26: 967–973

    Article  Google Scholar 

  151. Yu Z, Wang X, Du Y, et al. Fabrication and characterization of textured Bi2Te3 thermoelectric thin films prepared on glass substrates at room temperature using pulsed laser deposition. J Crystal Growth, 2013, 362: 247–251

    Article  Google Scholar 

  152. Xu Z J, Hu L P, Ying P J, et al. Enhanced thermoelectric and mechanical properties of zone melted p-type (Bi,Sb)2Te3 thermoelectric materials by hot deformation. Acta Mat, 2015, 84: 385–392

    Article  Google Scholar 

  153. Liu W, Jie Q, Kim H S, et al. Current progress and future challenges in thermoelectric power generation: From materials to devices. Acta Mat, 2015, 87: 357–376

    Article  Google Scholar 

  154. Daniel M V, Johnson D C, Katona G L, et al. Structural properties of thermoelectric skutterudite gradient films fabricated by modulated elemental reactant method. J Alloys Compounds, 2015, 636: 405–410

    Article  Google Scholar 

  155. Daniel M V, Brombacher C, Beddies G, et al. Structural properties of thermoelectric CoSb3 skutterudite thin films prepared by molecular beam deposition. J Alloys Compounds, 2015, 624: 216–225

    Article  Google Scholar 

  156. Zhu Y, Su W, Liu J, et al. Effects of Dy and Yb co-doping on thermoelectric properties of CaMnO3 ceramics. Ceramics Int, 2015, 41: 1535–1539

    Article  Google Scholar 

  157. Gao F, Yang S, Li J, et al. Fabrication, dielectric, and thermoelectric properties of textured SrTiO3 ceramics prepared by RTGG method. Ceramics Int, 2015, 41: 127–135

    Article  Google Scholar 

  158. Delorme F, Diaz-Chao P, Guilmeau E, et al. Thermoelectric properties of Ca3Co4O9–Co3O4 composites. Ceramics Int, 2015, 41: 10038–10043

    Article  Google Scholar 

  159. Bochentyn B, Karczewski J, Miruszewski T, et al. Structure and thermoelectric properties of Bi-Te alloys obtained by novel method of oxide substrates reduction. J Alloys Compounds, 2015, 646: 1124–1132

    Article  Google Scholar 

  160. Raghasudha M, Ravinder D, Veerasomaiah P. Thermoelectric power studies of Co–Cr nano ferrites. J Alloys Compounds, 2014, 604: 276–280

    Article  Google Scholar 

  161. Rowe D M. Thermoelectrics Handbook: Macro to Nano. Boca Raton: CRC Press, 2005

    Book  Google Scholar 

  162. Hosono H. Nanomaterials: From Research to Applications. Amsterdam: Elsevier, 2006

    Google Scholar 

  163. Poudel B, Hao Q, Ma Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320: 634–638

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LinGen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Meng, F. & Sun, F. Thermodynamic analyses and optimization for thermoelectric devices: The state of the arts. Sci. China Technol. Sci. 59, 442–455 (2016). https://doi.org/10.1007/s11431-015-5970-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-5970-5

Keywords

Navigation